Volume of Coherence

  • Andrzej Zardecki
  • Claude Delisle
  • Jacques Bures
Conference paper


The volume of coherence has been usually defined as the volume of a right-angled cylinder whose base is the area of coherence and whose height is the coherence length.[1] It is also the volume corresponding to one cell of phase space of photons.[2,3] We shall show in this paper that the former definition can be retained only in some particular cases whereas the latter one describes a greater variety of cases provided the notion of a cell of phase space is adequately specified.


Spectral Density Coherence Time Detector Surface Mutual Coherence Photoelectric Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    A. Kastler, Quantum Electronics, Proceedings of the Third International Congress, ed. N. Bloembergen and P. Grivet ( Dunod et Cie., Paris, Columbia University Press, New York, 1964 ) p. 3.Google Scholar
  3. 3.
    R.H. Brown and R.Q. Twiss, Proc. Roy. Soc. (London) 243A, 291 (1958).ADSCrossRefGoogle Scholar
  4. 4.
    L. Mandel, Proc. Phys. Soc. 74, 113 (1959).CrossRefGoogle Scholar
  5. 5.
    C. Delisle, J. Bures and A. Zardecki, J. Opt. Soc. Am. 61, 1583 (1971).Google Scholar
  6. 6.
    J. Bures, C. Delisle and A. Zardecki, Can. J. Phys. 50, 760 (1972).ADSCrossRefGoogle Scholar
  7. 7.
    A. Zardecki, C. Delisle and J. Bures, Opt. Comm. (in press).Google Scholar
  8. 8.
    F. Ghielmetti, Phys. Letters 12, 210 (1964).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    R.J. Glauber, Phys. Rev. 131, 2766 (1963).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    M. Born and E. Wolf, Principles of Optics, 4th ed. ( Pergamon Press, New York, 1970 ) Ch. X.Google Scholar
  11. 11.
    A.T. Forrester, R.A. Gudmundsen and P.O. Johnson, Phys. Rev. 99, 1691 (1955).ADSCrossRefGoogle Scholar
  12. 12.
    H.A. Haus, in Proceedings of the International School of Physics “Enrico Fermi” XLII Course, ed. R.J. Glauber ( Academic Press, New York, 1969 ) p. 111.Google Scholar
  13. 13.
    H.Z. Cummins and H.L. Swinney, in Progress in Optics, ed. E. Wolf (North-Holland Publishing Co., Amsterdam, 1970) VIII.Google Scholar
  14. 14.
    L. Mandel, J. Opt. Soc. Am. 51, 1342 (1961).Google Scholar
  15. 15.
    J. Bures, C. Delisle and A. Zardecki, Can. J. Phys. 49, 3064 (1971).ADSCrossRefGoogle Scholar
  16. 16.
    J. Bures and C. Delisle, Can. J. Phys. 49, 1255 (1971).ADSCrossRefGoogle Scholar
  17. 17.
    L.E. Estes, L.M. Narducci and R.A. Tuft, J. Opt. Soc. Am. 61, 1301 (1971).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Andrzej Zardecki
    • 1
  • Claude Delisle
    • 1
  • Jacques Bures
    • 1
  1. 1.Université LavalQuebecCanada

Personalised recommendations