Coherence and Quantum Optics pp 157-182 | Cite as

# Master Equations in the Theory of Incoherent and Coherent Spontaneous Emission

## Abstract

The subject of spontaneous emission is a very old one. Recently this has received a whole new momentum because it has become possible to observe some of the peculiar phenomena associated with it. Of particular interest is the phenomenon of superradiance which was discovered by Dicke [1] in 1954. He found that the radiation rate from a collection of identical two-level atoms or molecules is, under certain circumstances depending on the excitation of the system, proportional to the square of the number of atoms. Dicke employed the second order perturbation theory to calculate the characteristics of the emitted radiation. We would, of course, like a description which enables us to calculate time dependent statistical properties.

## Keywords

Master Equation Spontaneous Emission Atomic System Black Body Radiation Radiation Rate## Preview

Unable to display preview. Download preview PDF.

## Footnotes

- 1.R.H. Dicke, Phys. Rev.
*93*, 99 (1954).ADSMATHCrossRefGoogle Scholar - 2.
- 3.
- 4.W. Heitler and S.T. Ma, Proc. Roy. Ir. Ac.
*52*, 109 (1949); W. Heitler*Quantum Theory of Radiation*(Oxford University Press, 3rd edition) § 16.MathSciNetGoogle Scholar - 5.M.L. Goldberger and K.M. Watson
*Collision Theory*(John Wiley New York, 1964), Chapter 8: Generalizations of this method are given in A.S. Goldhaber and K.M. Watson, Phys. Rev.*160*, 1151 (1967); L. Mower, Phys. Rev.*165*, 145 (1968).MATHGoogle Scholar - 6.F.E. Low, Phys. Rev.
*88*, 53 (1952).ADSMATHCrossRefGoogle Scholar - 7.E.T. Jaynes and F.W. Cummings, Proc.IEEE
*51*, 89 (1963); M.D. Crisp and E.T. Jaynes, Phys. Rev.*179*, 1253 (1969); C.R. Stroud and E.T. Jaynes, Phys. Rev.*A1*, 106 (1970)CrossRefGoogle Scholar - 8.C.S. Chang and P. Stehle, Phys. Rev.
*A4*, 641 (1971).ADSCrossRefGoogle Scholar - 9.M.Dillard and H.R. Robl, Phys. Rev.
*184*, 312 (1969).ADSCrossRefGoogle Scholar - 10(a).G.S. Agarwal Phys. Rev.
*A2*, 2038 (1970).ADSCrossRefGoogle Scholar - 10(b).G.S. Agarwal Phys. Rev.
*A3*, 1783 (1971);ADSGoogle Scholar - 10(c).G.S. Agarwal Nuovo Cim. Lett.
*2*, 49 (1971);Google Scholar - 10(d).G.S. Agarwal Nuovo Cim. Lett.
*2*, 49 (1971);Google Scholar - 10(e).G.S. Agarwal Phys. Rev.
*A4*, 1778 (1971);ADSGoogle Scholar - 10(f).G.S. Agarwal Phys.Rev.
*A7*(1973)[in press]. Many of the results, which I would present here, have already appeared in these references.Google Scholar - 11.R.W. Zwanzig in
*Lectures in Theoretical Physics*, ed. W.E. Brit- tin et al (Wiley, New York 1961) Vol. Ill; Physica 33, 119 (1964); see also G.S. Agarwal, Phys. Rev. 178, 2025 (1969).Google Scholar - 12.For the use of such methods to other problems in quantum optics, we refer to G.S. Agarwal in
*Progress in Optics*, ed. E. Wolf (North-Holland Publ. Co., Amsterdam) Vol. XI (in press).Google Scholar - 13.
- 14.R. Bonifacio, P. Schwendimann and F. Haake, Phys. Rev.
*A4*, 302 (1971); ibid*A4*, 854 (1971); R. Bonifacio and P. Schwendimann, Nuovo Cim. Letters*3*, 512 (1970).Google Scholar - 15.See e. g. H. Haken in
*Handbuch der Physik*ed. S. Flügge (Springer, Berlin 1970), Vol. XXV/2c, p. 28.Google Scholar - 16.See e. g. E.A. Power and S. Zienau, Phil. Trans. Roy. Soc.
*251*, 427 (1959).MathSciNetADSMATHCrossRefGoogle Scholar - 17.E.A. Power, Nuovo Cim 6, 7 (1957); M.J. Stephen, J. Chem. Phys.
*40*, 669 (1964).MathSciNetMATHCrossRefGoogle Scholar - 18.M. Lax, Phys. Rev.
*172*, 350 (1968),ADSCrossRefGoogle Scholar - 19.J.H. Eberly and N.E. Rehler,Phys. Lett.
*29A*, 142 (1969); N.E. Rehler and J.H. Eberly,Phys. Rev.*A3*, 1735 (1971).Google Scholar - 20.cf. ref. 13.Google Scholar
- 21.This part of our presentation follows closely ref. 10c.Google Scholar
- 22.The author would like to thank Dr. F. Haake for a discussion in which this point came up.Google Scholar
- 23.C.R. Stroud, J.H. Eberly, W.L. Lama and L. Mandel, Phys. Rev.
*A5*, 1094 (1971).Google Scholar - 24.F.T. Arecchi, G.P. Banfi and V. Fassato-Bellani, Nuovo Cim. (in print).Google Scholar
- 25.E.C.G. Sudarshan, Phys. Rev. Letters
*10*, 277 (1965); R. J. Glauber, Phys. R. v.*131*,2766 (1963). For the general transformation of the operator equations into c-number equations, see G.S. Agarwal and E. Wolf, Phys. Rev. Lett.*21*, 180 (1968); Phys. Rev.*D2*, 2187 (1970).MathSciNetADSCrossRefGoogle Scholar - 26.W.L. Lama, R. Jodoin and L. Mandel, Am. J. Phys.
*40*, 32 (1972).ADSCrossRefGoogle Scholar - 27.Starting from a different viewpoint this master equation has also been obtained by Bonifacio etal, ref. 14. (a) Ω
_{ij}^{(2)}, in principle, depends on the positions of ith and jth atom even for small systems. The permutation symmetry is also violated and it does not appear anymore convenient to work with the collective operators. However, there may be geometries for which Ω_{ij}^{(2)}≈ Ω, i. e. it is on the average independent of i,j (cf. ref. 23). In such cases the solution (54) is modified toGoogle Scholar - 28.A.M. Ponte Goncalves and A. Tallet, Phys. Rev.
*A4*, 1319 (1971).ADSCrossRefGoogle Scholar - 29.Such decoupling procedures are, of course, very familiar in non-equilibrium statistical mechanics, see e. g. D.N. Zubarev, Sov. Phys. Uspekhi
*3*, 320 (1960); see also L.P. Kadanoff and G. Baym*Quantum Statistical Mechanics*( Benjamin Inc., New York 1962 ).MathSciNetADSCrossRefGoogle Scholar - 30.R. Bonifacio and M. Gronchi, Nuovo Cim. Lett.
*1*, 1105 (1971); V. DeGiorgio, Opt. Commun.*2*, 362 (1971).CrossRefGoogle Scholar - 31.N.M. Kroll in
*Quantum Optics and Quantum Electronics*ed. Cohen Tannoudji et al. (Gordon and Breach N.Y. 1965 ) p. 47.Google Scholar - 32.cf. ref. (8); J.E. Walsch, Phys. Rev. Lett.
*27*, 208 (1971); G. Barton, Phys. Rev.*A5*, 468 (1972).CrossRefGoogle Scholar - 33.see e. g. ref. 12.Google Scholar
- 34.P.R. Fontana and D.J. Lynch, Phys. Rev.
*A2*, 347 (1970).ADSCrossRefGoogle Scholar