Catalysis by Inverse Micelles in Non-Polar Solvents

  • E. J. Fendler
  • Shuya A. Chang
  • J. H. Fendler
  • R. T. Medary
  • O. A. El Seoud
  • V. A. Woods


The rates of numerous reactions are affected by the presence of micellar surfactants in aqueous solutions.1–4 Structural similarities between globular proteins and spherical micelles and the analogies between enzymatic and micellar catalysis have prompted recent investigations of micellar systems as possible models for the micro-environment of the active site of enzymes. Although the kinetics for micellar catalysis generally obeys the Michaelis-Menten equation and, in many cases, competitive inhibition has been observed, micelles in aqueous solutions rarely enhance the rates of reactions by factors greater than 102 and show relatively limited substrate specificity.1–3 Micelles, unlike enzymes, are in a dynamic equilibrium with the monomeric surfactant and have comparatively mobile structures in water,5 Additionally, micelles do not bind the substrate in a rigid configuration with a specific orientation. It appears, therefore, that the aqueous micellar systems investigated to-date provide somewhat poorer models for enzymatic interactions than originally anticipated. Since the active sites of many enzymes are in a relatively hydrophobic environment and since X-ray crystallographic studies have indicated ion pair and hydrogen bonding interactions in polar regions of some proteolytic enzymes,6,7 model studies in apolar solvents8 and at interfaces9 have provided a better understanding of the mechanisms involved. The hydrolysis of p-nitrophenyldodecanoate has recently been examined in hexanol systems containing water and hexadecyl-trimethylammonium bromide under conditions where formation of micelles, “reverse” micelles, and liquid crystalline phases have been demonstrated.10,11 Rate accelerations of ca. 20-fold have been found in the regions where water is solubilized in the polar interior of the reversed micelle. This rate enhancement was analogous to that observed previously for the reaction of p-nitrophenyldodecanoate in aqueous micellar hexadecyltrimethylammonium bromide solution12 indicating that solubilization of the hydrolyzing agent results in catalytic efficiency similar to that for substrate solubilization.


Critical Micelle Concentration Surfactant Concentration Reversed Micelle Micellar System Rate Enhancement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. H. Cordes and R. B. Dunlap, Accounts Chem. Res., 2, 329 (1969).CrossRefGoogle Scholar
  2. 2.
    E. J. Fendler and J. H. Fendler, Advan. Phys. Org. Chem., 8, 271 (1970).CrossRefGoogle Scholar
  3. 3.
    T. C. Bruice, in “The Enzymes,” Vol. 2, 3rd ed., Academic Press, New York, N.Y., 1970, p. 217.Google Scholar
  4. 4.
    H. Morawetz, Advan. Cat., 20, 341 (1969).CrossRefGoogle Scholar
  5. 4.
    H. Morawetz, Accounts Chem. Res., 3, 354 (1970).CrossRefGoogle Scholar
  6. 5.
    P. H. Elworthy, A. T. Florence, and C. B. Macfarlane, “Solubilization by Surface Active Agents,” Chapman and Hall, London, 1968.Google Scholar
  7. 6.
    P. B. Sigler, D. M. Blow, B. W. Matthews, and R. Henderson, J. Mol. Biol., 35, 143 (1968).CrossRefGoogle Scholar
  8. 7.
    T. A. Steitz, R. Henderson, and D. M. Blow, J. Mol. Biol., 46, 337 (1969).CrossRefGoogle Scholar
  9. 8.
    F. M. Menger, J. Amer. Chem. Soc., 88, 3081 (1966).CrossRefGoogle Scholar
  10. R. L. Snell, W. Kwok, and Y. Kim, J. Amer. Chem. Soc., 89, 6728 (1967).CrossRefGoogle Scholar
  11. 9.
    F. M. Menger, J. Amer. Chem. Soc., 92, 5965 (1970).CrossRefGoogle Scholar
  12. 10.
    S. Friberg and S. I. Ahmad, J. Phys. Chem., 75, 2001 (1971).CrossRefGoogle Scholar
  13. 11.
    S. I. Ahmad and S. Friberg, J. Amer. Chem. Soc., 94, 5196 (1972).CrossRefGoogle Scholar
  14. 12.
    L. R. Romsted and E. H. Cordes, J. Amer. Chem. Soc., 90, 4404 (1968).CrossRefGoogle Scholar
  15. 13.
    F. M. Fowkes, in “Solvent Properties of Surfactant Solutions,” K. Shinoda, Ed., Marcel Dekker, New York, N.Y., 1967, p. 67.Google Scholar
  16. 14.
    J. H. Fendler, E. J. Fendler, R. T. Medary, and O. A. El Seoud, J.C.S. Faraday I, submitted.Google Scholar
  17. 15.
    N. Muller and R. H. Birkhahn, J. Phys. Chem., 71, 957 (1967).CrossRefGoogle Scholar
  18. 16.
    N. Muller and R. H. Birkhahn, J. Phys. Chem., 72, 583 (1968).CrossRefGoogle Scholar
  19. 17.
    R. Haque, J. Phys. Chem., 72, 3056 (1968).CrossRefGoogle Scholar
  20. 18.
    R. E. Bailey and G. H. Cady, J. Phys. Chem., 73, 1612 (1969).CrossRefGoogle Scholar
  21. 19.
    E. J. Fendler, J. H. Fendler, R. T. Medary, and V. A. Woods, Chem. Coram., 1497 (1971). J. H. Fendler, E. J. Fendler, R. T. Medary and V. A. Woods, J. Amer. Chenu Soc., 94, 0000 (1972).Google Scholar
  22. 20.
    J. H. Fendler, J.C.S. Chem. Coram., 269 (1972).Google Scholar
  23. 21.
    J. H. Fendler, E. J. Fendler, and M. V. Merritt, J. Org. Chem., 36, 2172 (1971); L. M. Casilio, E. J. Fendler, and J. H. Fendler, J. Chem. Soc (B), 1377 (1971); and references cited therein.CrossRefGoogle Scholar
  24. 22.
    W. V. Walter and R. G. Hayes, Biochim. Biophys. Acta, 249, 528 (1971).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • E. J. Fendler
    • 1
  • Shuya A. Chang
    • 1
  • J. H. Fendler
    • 1
  • R. T. Medary
    • 1
  • O. A. El Seoud
    • 1
  • V. A. Woods
    • 1
  1. 1.Department of ChemistryTexas A & M UniversityCollege StationUSA

Personalised recommendations