Micellar Control of the Nitrous Acid Deamination Reaction

  • Robert A. Moss
  • Charles J. Talkowski
  • David W. Reger
  • Warren L. Sunshine
Conference paper


The nitrous acid deamination of amines descends from Piria’s discovery (1848) that the action of nitrous acid on either aspartic acid or asparagine gave malic acid.1 Despite subsequent intensive investigation,2 the important role which micelles can play in controlling the kinetics and stereochemistry of this reaction remained unrevealed until 1969.3


Micellar Phase Stern Layer Asymmetric Induction Micellar Catalysis Cationic Micelle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. (1).
    R. Piria, Ann. Chem., 68, 343 (1848).CrossRefGoogle Scholar
  2. (2).
    Reviews include: (a) A. Streitwieser, Jr., J. Org. Chem., 22, 861 (1957).CrossRefGoogle Scholar
  3. (b).
    J. H. Ridd, Quart. Rev. (London), 15, 418 (1961).CrossRefGoogle Scholar
  4. (c).
    M. C. Whiting, Chem. Brit., 2, 482 (1966).Google Scholar
  5. (d).
    E. H. White and D. J. Woodcock, in “The Chemistry of the Amino Group,” S. Patai, Ed., Interscience, New York, N.Y., 1968, pp. 44Off.Google Scholar
  6. (e).
    R. A. Moss, Chem. Eng. News, 49, Number 48, 22 November, 1971, p. 28.CrossRefGoogle Scholar
  7. (3).
    R. A. Moss and D. W. Reger, J. Amer. Chem. Soc., 91, 7539 (1969).CrossRefGoogle Scholar
  8. (4).
    T.W.J. Taylor, J. Chem. Soc., 1099 (1928).Google Scholar
  9. (5).
    L. P. Hammett, “Physical Organic Chemistry,” McGraw-Hill Book Co., New York, N.Y., 1940, p.294.Google Scholar
  10. (6).
    E. Abel, H. Schmid, and J. Schafranik, Z. Physik. Chem., Bodenstein Festband, 510 (1931).Google Scholar
  11. (7).
    Ir spectra of the scrubbed and collected nitrogen showed neither NO nor NO2, and only traces of N2O.Google Scholar
  12. (8).
    At pH 4, more than 99% of the aminoalkane is in the protonated, alkylammonium ion form.Google Scholar
  13. (9).
    R. A. Moss and C. J. Talkowski, Tetrahedron Lett., 703 (1971).Google Scholar
  14. (10).
    The cmc of 2-0TA+Br in 1.5M NaBr solution is about O.15M,11 and micelles must be present in Case 5.Google Scholar
  15. (11).
    R. A. Moss and W. L. Sunshine, J. Org. Chem., 35, 3581 (1970).CrossRefGoogle Scholar
  16. (12).
    Two recent reviews are: (a) E. J. Fendler and J. H. Fendler, Adv. Phys. Org. Chem., 8, 271 (1970).CrossRefGoogle Scholar
  17. (b).
    E. H. Cordes and R. B. Dunlap, Accts. Chem. Res., 2, 329 (1969).CrossRefGoogle Scholar
  18. (13).
    Separate experiments demonstrated the linear dependence of k3 on [H+], demanded by (10).Google Scholar
  19. (14).
    M. T. Behme and E. H. Cordes, J. Amer. Chem. Soc., 87, 260 (1965).CrossRefGoogle Scholar
  20. (15).
    In terms of a thermodynamic cycle relating free and micellized amine and ammonium ion, the micelle “selects” amine from the bulk phase in preference to ammonium ion, for there is no unfavorable electrostatic interaction in the solubilization of the amine, whereas work must be done against the micellar field in order to solubilize the ammonium ion.Google Scholar
  21. (16).
    See reference 2c for a statement of this view; also see H. Maskill, R. M. Southam, and M. C. Whiting, Chem. Commun., 496 (1965).Google Scholar
  22. (17).
    For a review, see D. J. Raber and J. M. Harris, J. Chem. Ed., 49, 60 (1972).CrossRefGoogle Scholar
  23. (18).
    A. Streitwieser, Jr., and W. D. Schaeffer, J. Amer. Chem. Soc., 79, 288 (1957).Google Scholar
  24. (19).
    K. B. Wiberg, Ph.D. Thesis, Columbia University, New York, N.Y., 1950.Google Scholar
  25. (20).
    R. A. Moss and S. M. Lane, J. Amer. Chem. Soc., 89, 5655 (1967).CrossRefGoogle Scholar
  26. (21).
    M. Vogel and J. D. Roberts, J. Amer. Chem. Soc., 88, 2262 (1966).CrossRefGoogle Scholar
  27. (22).
    P. Brewster, F. Hiron, E. D. Hughes, C. K. Ingold, and P.A.D.S. Rao, Nature, 166, 179 (1950).CrossRefGoogle Scholar
  28. (23).
    F. G. Mann and H.W.G. Porter, J. Chem. Soc., 456 (1964).Google Scholar
  29. (24).
    B. Halpern and J. W. Westley, Chem. Commun., 34 (1966).Google Scholar
  30. (25).
    R. H. Pickard and J. Kenyon, J. Chem. Soc., 45 (1911). See reference 21 for a discussion of configurational correlation of sec-aminoalkanes and sec-alkanols.Google Scholar
  31. (26).
    R. A. Moss, D. W. Reger, and E. M. Emery, J. Amer. Chem. Soc., 92, 1366 (1970), and references cited there.CrossRefGoogle Scholar
  32. (27).
    L. R. Romsted and E. H. Cordes, J. Amer. Chem. Soc., 90 4404 (1968).CrossRefGoogle Scholar
  33. P. Mukerjee and A. Ray, J. Phys. Chem., 70, 2144 (1966).CrossRefGoogle Scholar
  34. (28).
    This point was demonstrated by control experiments.Google Scholar
  35. (29).
    Only the intermediate values will be considered.Google Scholar
  36. (30).
    E. W. Anacker and H. M. Gose, J. Phys. Chem., 67, 1713 (1963), and references therein.CrossRefGoogle Scholar
  37. (31).
    Actually less nitrite is present; about 8% of the initial nitrite is protonated at pH 4.Google Scholar
  38. (32).
    A. Voet, Chem. Rev., 20, 169 (1937).CrossRefGoogle Scholar
  39. (33).
    The tabulated data is omitted for reasons of space, but can be reconstructed from Figure 1.Google Scholar
  40. (34).
    R. A. Moss and C. J. Talkowski, J. Amer. ehem. Soc., 94, 4767 (1972).CrossRefGoogle Scholar
  41. (35).
    Deaminations in micellar 2-OTA+Br solutions (NaNO2/ HBr) also failed to afford 2-octanol with altered stereochemistry. However, kobs was augmented.Google Scholar
  42. (36).
    No doubt further investigation will provide examples of “borderline” anions.Google Scholar
  43. (37).
    E. W. Anacker and R. D. Geer, J. Coll. and Interface Sci., 35, 441 (1971).CrossRefGoogle Scholar
  44. R. D. Geer, E. H. Eylar, and E. W. Anacker, J. Phys. Chem., 75, 369 (1971); and references cited there.CrossRefGoogle Scholar
  45. (38).
    In a related study, we observed identical cmc’s for racemic and optically active 2-octylammonium ions: “The effect of chirality at the head group... is probably mitigated by the water molecules and gegenions which insulate the head groups from each other in the micelle.” See reference 11.Google Scholar
  46. (39).
    P. Mukerjee, Adv. Coll. and Interface Sci., 1, 241 (1967).Google Scholar
  47. (40).
    The thermodynamics of anion hydration is discussed by H. F. Halliwell and S. C. Nyburg, Trans. Faraday Soc., 59, 1126 (1963).CrossRefGoogle Scholar
  48. H. F. Halliwell and S. C. Nyburg, J. Chem. Soc., 4603 (1960).Google Scholar
  49. See, also, S. Subramanian and H. F. Fisher, J. Phys. Chem. 76, 84 (1972).CrossRefGoogle Scholar
  50. (41).
    H. P. Gregor, J. Belle, and R. A. Marcus, J. Amer. Chem. Soc., 77, 2713 (1955).CrossRefGoogle Scholar
  51. (42).
    W. P. Jencks, “Catalysis in Chemistry and Enzymology”, McGraw-Hill Book Co., New York, N.Y., 1969, Chapters 7 and 8.Google Scholar
  52. (43).
    For examples, see: R. B. Dunlap and E. H. Cordes, J. Amer. Chem. Soc., 90, 4395 (1968).CrossRefGoogle Scholar
  53. C. A. Bunton and L. Robinson, J. Org. Chem., 34, 773, 780 (1969); and references 12a and 12b.CrossRefGoogle Scholar
  54. (44).
    Similar phenomena may be involved in the micelle catalyzed decarboxylation of 6-nitrobenzisoxazole-3-carboxylate ion.45 Google Scholar
  55. (45).
    C. A. Bunton, M. J. Minch, and L. Sepulveda, J. Phys. Chem., 75, 2708 (1971).CrossRefGoogle Scholar
  56. C. A. Bunton, A. Kamego, and M. J. Minch, J. Org. Chem., 37, 1388 (1972).CrossRefGoogle Scholar
  57. (46).
    W. H. Graham and J. E. Leffler, J. Phys. Chem., 63, 1274 (1959).CrossRefGoogle Scholar
  58. (47).
    C. A. Bunton, L. Robinson, and M. F. Stam, Tetrahedron Lett., 121 (1971).Google Scholar
  59. (48).
    R. A. Moss and W. L. Sunshine, unpublished work.Google Scholar
  60. (49).
    See, in this regard, E. J. Fendler, J. H. Fendler, R. T. Medary, and V. A. Woods, Chem., Commun., 1497 (1971).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Robert A. Moss
    • 1
  • Charles J. Talkowski
    • 1
  • David W. Reger
    • 1
  • Warren L. Sunshine
    • 1
  1. 1.Wright Laboratory, School of ChemistryRutgers University, The State University of New JerseyNew BrunswickUSA

Personalised recommendations