Advertisement

Micellar Effects in Steady-State Radiation Induced Reactions

  • J. H. Fendler
  • G. W. Bogan
  • E. J. Fendler
  • G. A. Infante
  • P. Jirathana

Abstract

The primary chemical result of the irradiation of water after the deposition of energy is the formation of the following species:
$${\text{H}}_{\text{2}} {\text{O}}\, \to e_{aq}^ - + \bullet H + \bullet OH + H_2 + H_2 O_2 + H_{3^0 }^ + $$
(1)
With gamma rays the primary products given in reaction 1 are formed inhomogeneously in small widely spaced clusters in what has been known as spurs within a time scale of 10−10 to 10−8 second.1 After the spur is formed, these entities diffuse into the bulk of the solvent or competitively react with each other and with the solvent to form H2 and H2O2 or to reform water. Using scavengers the primary yields have been determined to be: \(G_{e_{aq} }^ - = 2.8 \pm 0.1,\,G_H = 0.6 \pm 0.1,G_{OH} = 2.6 \pm 0.1,G_{H_2 } = 0.45\) and \(G_{H_2 O_2 } = 0.17_.^{ - 2} \) A knowledge and appreciation of the rate constants for the primary chemical species with each other and with dissolved solutes3 are commonly and profitably employed to simplify aqueous radiation induced reactions. Table I lists rate constants for some of the most frequently used reactions.

Keywords

Critical Micelle Concentration Micellar System Critical Micelle Concen Barbituric Acid Radiation Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. J. Fendler and J. H. Fendler, Prog. Phys. Org. Chem., 7, 229 (1970) and references cited therein.CrossRefGoogle Scholar
  2. 2.
    G(X) and G(-X) refer to the number of molecules of product X formed or decomposed, respectively, on irradiation per 100 eV of absorbed energy. The notation Gx is used to designate the primary radical yield and distinguishes it from the observed yield, G(X). For example, G(H2) is rarely equal to \(G_{H_2 } \)since the hydrogen is formed not only by primary recombination of eāq, ·H and ·OH but also via reactions of these species with the solutes or other species formed during radiolysis.Google Scholar
  3. 3.
    M. Anbar and P. Neta, Int. J. Appl. Radiat. Isotopes, 18, 493 (1967).CrossRefGoogle Scholar
  4. 4.
    M. Anbar, “Selected Specific Rates of Reactions in Aqueous Solution. I. Hydrated Electron. II. Hydrogen Atom. III. Hydroxyl Radical. IV. Perhydroxyl Radical,” to be published. (For information write Radiation Chemistry Data Center, Radiation Laboratory, Univ. of Notre Dame, Notre Dame, Ind. 46556).Google Scholar
  5. 5.
    R. Braams and M. Ebert, in “Radiation Chemistry. I” (Ed. R. F. Gould), Advances in Chem. Ser., 81, 464 (1968).Google Scholar
  6. 6.
    L. I. Grossweiner, in “Radiation Chemistry. I” (Ed. R. F. Gould), Advances in Chem. Ser., 81, 309 (1968).Google Scholar
  7. 7.
    E. H. Cordes and R. B. Dunlap, Accounts Chem. Res., 2, 329 (1969).CrossRefGoogle Scholar
  8. 8.
    E. J. Fendler and J. H. Fendler, Advan. Phys. Org. Chem., 8, 271 (1970).CrossRefGoogle Scholar
  9. 9.
    More details can be found in references 1 and 10–13.Google Scholar
  10. 10.
    J. H. Fendler and L. K. Patterson, J. Phys. Chem., 74, 4608 (1970).CrossRefGoogle Scholar
  11. 11.
    L. K. Patterson, K. M. Bansal and J. H. Fendler, Chem. Commun., 152 (1971).Google Scholar
  12. 12.
    K. M. Bansal, L. K. Patterson, E. J. Fendler and J. H. Fendler, Int. J. Radiat. Phys. Chem., 3, 321 (1971).CrossRefGoogle Scholar
  13. 13.
    J. H. Fendler, E. J. Fendler, G. Bogan, L. K. Patterson and K. M. Bansal, J.C.S. Chem. Commun., 14 (1972).Google Scholar
  14. 14.
    G. E. Adams, J. W. Boag, J. Current and B. D. Michael, in “Pulse Radiolysis,” Academic Press, 1965, p. 117.Google Scholar
  15. 15.
    C. L. Greenstock, J. W. Hunt and M. Ng, Trans. Faraday Soc., 65, 3279 (1969).CrossRefGoogle Scholar
  16. 16.
    P. Neta, G. R. Holdren and R. H. Schuler, J. Phys. Chem., 75, 449 (1971).CrossRefGoogle Scholar
  17. 17.
    R. Teoule, D. Sc. Thesis, University of Lyons, 1970, No. 667.Google Scholar
  18. 18.
    M. Anbar, Advan. Phys. Org. Chem., 7, 115 (1969).CrossRefGoogle Scholar
  19. E. J. Hart and M. Anbar, “The Hydrated Electron,” Wiley-lnterscience, New York, 1970.Google Scholar
  20. 19.
    J. F. Ward and I. Kuo, Advan. Chem. Ser., 81, 368 (1968).CrossRefGoogle Scholar
  21. 20.
    S. J. Rehfeld, J. Phys. Chem., 74, 117 (1970).CrossRefGoogle Scholar
  22. 21.
    E. J. Fendler, C. L. Day and J. H. Fendler, J. Phys. Chem., 76, 1460 (1972).CrossRefGoogle Scholar
  23. 22.
    J. C. Eriksson and G. Gillberg, Acta Chem. Scand., 20, 2019 (1966).CrossRefGoogle Scholar
  24. 23.
    B.-S. Hahn and S. Y. Wang, J. Amer. Chem. Soc., 94, 4764 (1972).CrossRefGoogle Scholar
  25. 24.
    R. Teoule and J. Cadet, Chem. Commun., 1269 (1971).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • J. H. Fendler
    • 1
  • G. W. Bogan
    • 1
  • E. J. Fendler
    • 1
  • G. A. Infante
    • 1
  • P. Jirathana
    • 1
  1. 1.Department of ChemistryTexas A & M UniversityCollege StationUSA

Personalised recommendations