Recent Advances in the Chemistry of Micelles

  • Norbert Muller


During the last decade the study of micelle formation in detergent solutions, like many other areas of chemical science, has undergone almost explosive growth, promoted by technological advances which made possible substantial improvements in existing experimental methods and the introduction of altogether new techniques. An additional stimulus has been an upsurge of interest in the micellization phenomenon among chemists not primarily concerned with surfactant solutions for their own sake. This group consists principally of biochemists who have focussed attention on similarities between detergent micelles, monolayers, or bilayers and the phospholipid regions of biological membranes, and between micelles and globular proteins. Although micelles and proteins do not really have very much in common from a structural point of view beyond the fact that both are stabilized by hydrophobic interactions, it is now well established [1, 2] that micelles exert catalytic effects on assorted organic reactions which are at least reminiscent of the effects produced by enzymes. This discovery aroused the interest of physical organic chemists, and its ramifications form the subject matter of the major portion of this symposium.


Alkyl Chain Guest Molecule Alkyl Chain Length Outer Core Dodecyl Sodium Sulfonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. H. Cordes and R. B. Dunlap, Accounts Chenu Res., 2, 329 (1969).CrossRefGoogle Scholar
  2. 2.
    E. J. Fendler and J. H. Fendler, Advan. Phys. Org. Chem., 8, 271 (1970).CrossRefGoogle Scholar
  3. 3.
    P. Mukerjee and K. J. Mysels, J. Amer. Chem. Soc., 77, 2937 (1955).CrossRefGoogle Scholar
  4. 4.
    P. Mukerjee, Advan. Colloid Interface Sci., 1, 241 (1967).CrossRefGoogle Scholar
  5. 5.
    N. Muller and R. H. Birkhahn, J. Phys. Chem., 71, 957 (1967).CrossRefGoogle Scholar
  6. 6.
    J. A. Pople, W. G. Schneider, and H. J. Bernstein, “High Resolution Nuclear Magnetic Resonance,” McGraw-Hill Book Co., New York, N. Y., 1959, p. 222.Google Scholar
  7. 7.
    T. Nakagawa and K. Tori, Kolloid-Z. Z. Polym., 194, 143 (1964).CrossRefGoogle Scholar
  8. 8.
    J. C. Eriksson and G. Gillberg, Acta Chem. Scand., 20, 2019 (1966).CrossRefGoogle Scholar
  9. 9.
    H. Inoue and T. Nakagawa, J. Phys. Chem., 70, 1108 (1966).CrossRefGoogle Scholar
  10. 10.
    N. Muller and T. W. Johnson, J. Phys. Chem., 73, 2042 (1969).CrossRefGoogle Scholar
  11. 11.
    N. Muller and F. E. Platko, J. Phys. Chem., 75, 547 (1971).CrossRefGoogle Scholar
  12. 12.
    N. Muller, J. H. Pellerin, and W. W. Chen., J. Phys. Chem., to be published.Google Scholar
  13. 13.
    T. Yasunaga, H. Oguri, and M. Miura, J. Colloid Interface Sci., 23, 352 (1967).CrossRefGoogle Scholar
  14. 14.
    E. Graber, J. Lang, and R. Zana, Kolloid-Z.Z. Polym., 238, 470 (1970).CrossRefGoogle Scholar
  15. 15.
    E. Graber and R. Zana, Kolloid-Z. Z. Polym., 238, 479 (1970).CrossRefGoogle Scholar
  16. 16.
    N. M. Atherton and S. J. Strach, J. C. S. Faraday II, 68, 374 (1972).CrossRefGoogle Scholar
  17. 17.
    G. C. Kresheck, E. Hamori, G. Davenport, and H. A. Scheraga, J. Amer. Chem. Soc., 88, 246 (1966).CrossRefGoogle Scholar
  18. 18.
    B. C. Bennion, L. K. J. Tong, L. P. Holmes, and E. M. Eyring, J. Phys. Chem., 73, 3288 (1969).CrossRefGoogle Scholar
  19. 19.
    B. C. Bennion and E. M. Eyring, J. Colloid Interface Sci., 32, 286 (1970).CrossRefGoogle Scholar
  20. 20.
    J. Lang and E. M. Eyring, J. Polymer Sci. A-2, 10, 89 (1972).CrossRefGoogle Scholar
  21. 21.
    J. Lang, J. J. Auburn, and E. M. Eyring, J. Colloid Interface Sci., submitted. The author is indebted to Professor Eyring for a prepublication copy of this article.Google Scholar
  22. 22.
    N. Muller, J. Phys. Chem., submitted.Google Scholar
  23. 23.
    W. L. Courchene, J. Phys. Chem., 68, 1870 (1964).CrossRefGoogle Scholar
  24. 24.
    A. S. Waggoner, A. D. Keith, and O. H. Griffith, J. Phys. Chem., 72, 4129 (1968).CrossRefGoogle Scholar
  25. 25.
    O. H. Griffith and A. S. Waggoner, Accounts Chem. Res., 2, 17 (1969).CrossRefGoogle Scholar
  26. 26.
    M. Shinitzky, A. C. Dianoux, G. Gitler, and G. Weber, Biochemistry, 10, 2106 (1971).CrossRefGoogle Scholar
  27. 27.
    J. E. Gordon, J. C. Robertson, and R. L. Thorne, J. Phys. Chem., 74, 957 (1970).CrossRefGoogle Scholar
  28. 28.
    S. J. Rehfeld, J. Phys. Chem., 75, 3905 (1971).CrossRefGoogle Scholar
  29. 29.
    J. H. Fendler and L. K. Patterson, J. Phys. Chem., 75, 3907 (1971).CrossRefGoogle Scholar
  30. 30.
    E. J. Fendler, C. L. Day, and J. H. Fendler, J. Phys. Chem., 76, 1460 (1972).CrossRefGoogle Scholar
  31. 31.
    L. Benjamin, J. Phys. Chem., 70, 3790 (1966).CrossRefGoogle Scholar
  32. 32.
    J. M. Corkill, J. F. Goodman, and T. Walker, Trans. Far. Soc., 63, 768 (1967).CrossRefGoogle Scholar
  33. 33.
    J. Clifford and B. A. Pethica, Trans. Far. Soc., 60, 1483 (1964).CrossRefGoogle Scholar
  34. 34.
    J. Clifford, Trans. Far. Soc., 61, 1276 (1965).CrossRefGoogle Scholar
  35. 35.
    L. Benjamin, J. Phys. Chem., 68, 3575 (1964).CrossRefGoogle Scholar
  36. 36.
    J. M. Corkill, J. F. Goodman, and J. R. Tate, Trans. Far. Soc., 60, 996 (1964).CrossRefGoogle Scholar
  37. 37.
    J. M. Corkill, J. F. Goodman, and J. R. Tate, “Hydrogen Bonded Solvent Systems,” A. K. Covington and P. Jones, Eds., Taylor and Francis, Ltd., London, 1968, p. 181.Google Scholar
  38. 38.
    W. Kauzmann, Advan. Protein Chem., 14, 1 (1959).CrossRefGoogle Scholar
  39. 39.
    G. Nemethy and H. A. Scheraga, J. Chem. Phys., 36, 3401 (1962).CrossRefGoogle Scholar
  40. 40.
    D. C. Poland and H. A. Scheraga, J. Phys. Chem., 69, 2431 (1965).CrossRefGoogle Scholar
  41. 41.
    J. M. Corkill and J. F. Goodman, Advan. Colloid Interface Sci., 2, 297 (1969).Google Scholar
  42. 42.
    P. Mukerjee, J. Phys. Chem., 69, 2821 (1965).CrossRefGoogle Scholar
  43. 43.
    T. W. Johnson, Ph. D. Thesis, Purdue University, 1970.Google Scholar
  44. 44.
    N. Muller and J. H. Pellerin, Abstracts of the 162nd National Meeting, American Chemical Society, Washington, D. C. Sept. 1971.Google Scholar
  45. 45.
    W. F. Claussen and M. F. Polglase, J. Amer. Chem. Soc., 74, 4817 (1952).CrossRefGoogle Scholar
  46. 46.
    D. N. Glew and E. A. Moelwyn-Hughes, Disc. Far. Soc., 15, 150 (1953).CrossRefGoogle Scholar
  47. 47.
    D. N. Glew, J. Phys. Chem., 66, 605 (1962).CrossRefGoogle Scholar
  48. 48.
    W. C. Child, Jr., Quart. Rev., 18, 321 (1964).CrossRefGoogle Scholar
  49. 49.
    G. A. Jeffrey, Accounts Chem. Res., 2, 344 (1969).CrossRefGoogle Scholar
  50. 50.
    D. N. Glew, H. D. Mak, and N. S. Rath, Chem. Commun., 264 (1968).Google Scholar
  51. 51.
    D. N. Glew, H. D. Mak, and N. S. Rath, “Hydrogen Bonded Solvent Systems,” A. K. Covington and P. Jones, Eds., Taylor and Francis, Ltd., London, 1968 p. 195.Google Scholar
  52. 52.
    H. G. Hertz and W. Spalthoff, Z. Elektrochem. 63, 1096 (1959).Google Scholar
  53. 53.
    A. H. Narten and S. Lindenbaum, J. Chem. Phys., 51, 1108 (1969).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Norbert Muller
    • 1
  1. 1.Department of ChemistryPurdue UniversityLafayetteUSA

Personalised recommendations