Advertisement

Lithium pp 75-82 | Cite as

Pharmacology—Lithium’s Effects on Cyclic AMP, Membrane Transport, and Cholinergic Mechanisms

  • Eitan Friedman

Abstract

The functional significance of adenosine 3′, 5′-phosphate (cyclic AMP) in the mammalian central nervous system is unclear. Brain tissue is rich in cyclic AMP, which is unevenly distributed in rat brain particulate material associated with the nuclear and mitochondrial fractions (Sutherland et al., 1962; Ebadi et al., 1971). The specific distribution of cyclic AMP in various brain regions reflects the relative activities of the synthetic and degradative enzymes, adenyl cyclase, and phosphodiesterase. These enzymes have been found to vary in activity in specific regions of the brain (Weiss and Costa, 1968). Adenyl cyclase has been shown to be of highest specific activity in brain tissue (Sutherland et al., 1962; Weiss and Costa, 1968) and to be associated with subcellular fractions that contain membrane fragments and nerve endings (De Robertis et al., 1967). The precise localization of this enzyme is unknown; however, various lines of evidence point to an association with presynaptic structures (De Robertis et al., 1967), postsynaptic (Weiss and Costa, 1967) or extraneuronal sites, and also glial cells (Schimmer, 1971).

Keywords

Adenyl Cyclase Adenyl Cyclase Activity Acetylcholine Release Cholinergic Mechanism Affective Illness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulla, Y. H., and Hamada, K., 1970, 3’, 5’-Cyclic adenosine monophosphate in depression and mania, Lancet 1:378.PubMedCrossRefGoogle Scholar
  2. Allison, J. H., and Stewart, M. A., 1971, Reduced brain inositol in lithium-treated rats, Nature (New Biol.) 233:267.CrossRefGoogle Scholar
  3. Amdisen, A., and Schou, M., 1968, Lithium and the transfer rate of sodium across the blood-brain barrier, Psychopharmacologia 12:236.PubMedCrossRefGoogle Scholar
  4. Atsmon, A., 1970, Propranolol: big doses aid in psychotics, Med. Trib. 11(47): 3.Google Scholar
  5. Berg, G. R., and Glinsmann, W. H., 1970, Cyclic AMP in depression and mania. Lancet 2:834.CrossRefGoogle Scholar
  6. Bhattacharya, G., 1964, Influence of Li+ on glucose metabolism in rats and rabbits, Biochim. Biophys. Acta 93:644.PubMedCrossRefGoogle Scholar
  7. Bihler, L, and Adamic, S., 1967, The eflfect of lithium on intestinal sugar transport, Biochim. Biophys. Acta 135:466.PubMedCrossRefGoogle Scholar
  8. Birnbaumer, L., Pohl, S. L., and Rodbell M., 1969, Adenyl cyclase in fat cells. 1. Its properties and the effects of adenocorticotropin and fluoride, J. Biol. Chem. 244:3468.PubMedGoogle Scholar
  9. Bjegovic, M., and Randic, M., 1971, Effect of lithium ions on the release of acetylcholine from the cerebral cortex. Nature 230:587.PubMedCrossRefGoogle Scholar
  10. Bogdanski, D. F., Tissari, A., and Brodie, B. B., 1968, Role of sodium, potassium, ouabain and reserpine in uptake, storage and metabolism of biogenic amines in synaptosomes. Life Sci. 7:419.PubMedCrossRefGoogle Scholar
  11. Bowers, M. B., and Rozitis, A., 1970, Acetylcholine release from cortical brain slices of rats injected with lithium, J. Pharm. Pharmacol. 22:647.PubMedCrossRefGoogle Scholar
  12. Breckenridge, B. M., and Lisk, R. D., 1969, Cyclic adenylate and hypothalamic regulatory functions, Proc. Soc. Exptl. Biol. Med. 13:934.Google Scholar
  13. Broadus, A. E., Kaminsky, N. I., Hardman, J. G., Sutherland, E. W., and Liddle, G. W., 1970, Kinetic parameters and renal clearances of plasma cyclic AMP and cyclic GMP in man, Clin. Res. 18:73.Google Scholar
  14. Burke, G., 1970, Effects of cations and ouabain on thyroid adenyl cyclase, Biochim. Biophys. Acta 220:30.PubMedGoogle Scholar
  15. Caspary, W., and Crane, R. K., 1970, Active transport of myoinositol and its relation to the sugar transport system in hamster small intestine, Biochim. Biophys. Acta 203:308.PubMedCrossRefGoogle Scholar
  16. Clausen, T., 1968, The relationship between the transport of glucose and cations across cell membranes in isolated tissues. IV. The insulin-like effect of Li+, Biochim. Biophys. Acta 150:66.PubMedCrossRefGoogle Scholar
  17. Colburn, R. W., Goodwin, F. K., Bunney, W. E., Jr., and Davis, J. M., 1967, Effect of lithium on the uptake of noradrenaline by synaptosomes., Nature 215:1395.PubMedCrossRefGoogle Scholar
  18. Crane, R. K., 1965, Na+- dependent transport in the intestine and other animal tissues. Federation Proc. 24:1000.Google Scholar
  19. DeRobertis, E., Rodriquez de Lores Arnaiz, C., Alberici, M., Butcher, R. W., and Sutherland, E. W., 1967, Subcellular distribution of adenyl cyclase and cyclic phosphodiesterase in rat brain tissue, J. Biol. Chem. 242:3487.Google Scholar
  20. Doüsa T., and Hechter, O., 1970, Lithium and brain adenyl cyclase, Lancet 1:834.PubMedGoogle Scholar
  21. Ebadi, M. S., Weiss, B., and Costa, E., 1971, Distribution of cyclic adenosine monophosphate in rat brain, Arch. Neurol. 24:353.PubMedCrossRefGoogle Scholar
  22. Eccleston, D., Loose, R., Pallar, L A., and Sogden, R. P., 1970, Exercise and urinary excretion of cyclic AMP, Lancet 2:612.PubMedCrossRefGoogle Scholar
  23. Forn, J., and Valdecasas, F. G., 1971, Effects of lithium on brain adenyl cyclasc activity, Biochem. Pharmacol. 20:2773.PubMedCrossRefGoogle Scholar
  24. Frazer, A., and Mendels, J., 1971, Biological and behavioral studies of psychoactive drugs, 26th Nat. Mtg. Soc. Biol. Psychiat. Washington, D. C.Google Scholar
  25. Gessa, G. L., Krishna, G., Forn, J., Tagliamonte, A., and Brodie, B. B., 1970, Behavioral and vegetative effects produced by dibutyryl cyclic AMP injected into different areas of the brain, in: Role of Cyclic AMP in Cell Function, Vol. 3 (P. Greengard and E. Costa eds.), Raven Press, New York.Google Scholar
  26. Goldman, H. W., Lehr, D., and Friedman, E., 1971, Antagonistic effects of alpha and beta adrenergically coded hypothalamic neurones on consummatory behavior in the rat, Nature 231:453.PubMedCrossRefGoogle Scholar
  27. Kakiuchi, S., and Rail, T. W., 1968a, The influence of chemical agents on the accumulation of adenosine 3’, 5’-phosphate in slices of rabbit cerebellum, Mol. Pharmacol. 4:367.PubMedGoogle Scholar
  28. Kakiuchi, S. and Rail, T. W., 1968b, Studies on adenosine 3’, 5’-phosphate in rabbit cerebral cortex, Mol. Pharmacol. 4:379.PubMedGoogle Scholar
  29. Krishna, G., Ditzion, B. R., and Gessa, G. L., 1968, The intense ergotrophic stimulation induced by intiacerebral injection of dibutylryl cyclic 3’, 5’-AMP, Proc. Int. Union Physiol. Sci. 7:247.Google Scholar
  30. Leibowitz, S. F., 1970, Hypothalamic beta-adrenergic “satiety” system antagonizes an alpha-adrenergic “hunger” system in the rat. Nature 226:963.PubMedCrossRefGoogle Scholar
  31. Margolis, R. U., and Heller, A., 1965, The incorporation of myo(3H2)inositol into ratbrain monophosphoinositule in vivo, Biochim. Biophys. Acta 98:438.PubMedGoogle Scholar
  32. Margules, D. L., 1969, Nonadrenergic synapses for the suppression of feeding behavior. Life Sci. 8:693.PubMedCrossRefGoogle Scholar
  33. Murad, F., and Pak, C. Y. C., 1972, Urinary excretion of adenosine 3’, 5’-monophosphate and guanosine 3’, 5’-monophosphate. New Engl. J. Med. 286:1382.PubMedCrossRefGoogle Scholar
  34. Murphy, D. L., Colburn, R. W., Davis, J. M., and Bunney, W. E., Jr., 1969, Stimulation by lithium of monoamine uptake in human platelets. Life Sci. 8:1187.PubMedCrossRefGoogle Scholar
  35. Pappano, A. J., and Voile, R. L., 1967, Actions of lithium ions in mammalian sympathetic ganglia, J. Pharmacol. Exptl. Therap. 157:346.Google Scholar
  36. Paul, M. I., Cramer, H., and Goodwin, F. K., 1970a, Urinary cyclic AMP in affective illness, Lancet 2:996.CrossRefGoogle Scholar
  37. Paul, M. L, Ditzion, B. R., and Janowsky, D. S., 1970b, Affective illness and cyclic AMP excretion, Lancet 2:88.82 Eitan FriedmanGoogle Scholar
  38. Paul, M., Ditzion, B. R., Pauk, G. L., and Janowsky, D. S., 1970c, Urinary adenosine 3’, 5’-monophosphate excretion in affective disorders. Am. J. Psychiat. 126:137.Google Scholar
  39. Paul, M. L, Pauk, G. L., and Ditzion, B. R., 1970d, The effect of centrally acting drugs on the concentration of brain adenosine 3’, 5’-concentration of brain adenosine 3’, 5’- monophosphate. Pharmacology 3:148.CrossRefGoogle Scholar
  40. Paul, M. I., Cramer, H., and Bunney, W. E., 1971, Urinary adenosine 3’, 5’-monophosphate in the switch process from depression to mania. Science 171:300.PubMedCrossRefGoogle Scholar
  41. Robison, G. A., Coppen, A. J., Whybrow, P. C., and Prange, A. J., 1970, cyclic AMP in affective disorders. Lancet 2:1028.PubMedCrossRefGoogle Scholar
  42. Schimmer, B. P., 1971, Effects of catecholamines and monovalent cations on adenyl cyclase activity in cultured glial tumor cells, Biochim. Biophys. Acta 252:567.PubMedCrossRefGoogle Scholar
  43. Shimizu, H., Daly, J. W., and Creveling, C. R., 1969, A radioisotopic method for measuring the formation of adenosine 3’, 5’-cyclic monophosphate in incubated slices of brain, J. Neuwchem. 16:1609.CrossRefGoogle Scholar
  44. Siggins, G. R., Oliver, A. P., Hoffer, B. J., and Bloom, F. E., 1971, Cyclic adenosine monophosphate and norepinephrine: effects on transmembrane properties of cerebellar Purkinje cells, Science 171:192.PubMedCrossRefGoogle Scholar
  45. Sutheriand, E. W., Rail, T. W., and Menon, T., 1962, Adenyl cyclase: I. Distribution, preparation and properties, J. Biol. Chem. 237:1220.Google Scholar
  46. Waziri, R., 1968, Presynaptic effects of lithium on cholinergic synaptic transmission in Aplysia neurons, Life Sci. 7:865.CrossRefGoogle Scholar
  47. Weiss, B., and Costa, E., 1967, Adenyl cyclase activity in rat pineal gland: effects of chronic denervation and norepinephrine. Science 156:1760.CrossRefGoogle Scholar
  48. Weiss, B., and Costa, E., 1968, Regional and subcellular distribution of adenyl cyclase and 3’, 5’-cyclic nucleotide phosphodiesterase in brain and pineal gland, Biochem. Pharmacol. 17:2107.PubMedCrossRefGoogle Scholar
  49. Williams, J. A., Berens, S. C., and Wolff, J., 1971, Thyroid secretion in vitro: inhibition of TSH and dibutylryl cyclic AMP stimulated release by lithium. Endocrinology 88:1385.PubMedCrossRefGoogle Scholar
  50. Wolff, J., Berens, S. C., and Jones, A. B., 1970, Inhibition of thyrotropin-stimulated adenyl cyclase activity of beef thyroid membranes by low concentration of lithium ions, Biochem. Biophys. Res. Commim. 39:77.CrossRefGoogle Scholar
  51. Wurtman, R., Shein, H. M., and Larin, F., 1971, Medication by beta-adrenergic receptors of effect of norepinephrine on pineal synthesis of (C14) melatonin, J. Neurochem. 8(Part II): 1783.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Eitan Friedman
    • 1
  1. 1.Neuropsychopharmacology Research Unit, Department of PsychiatryNew York University Medical CenterNew YorkUSA

Personalised recommendations