Advertisement

Evolutionary Significance of Amoeba-Flagellate Transformation

  • Shuhei Yuyama

Abstract

Amoebo-flagellates include taxonomically diverse amoebae which can transform into flagellates under certain environmental conditions (1–7). Studies on the transformation of amoebo-flagellates appear to have implications in two separate aspects of evolutionary biology. One is the selective advantages of acquiring secondary motile organs on an organism which already possesses one--the amoeboid locomotion. An understanding of the precise environmental requirements for the transformation process would enable us to surmise more accurately the behaviour of these organisms in nature. The other aspect pertains to the evolution of motile organelles in eukaryotes. In the past, studies on the life cycle of an organism have frequently contributed to our understanding of the evolution of a certain trait and the phylogenic position of the organism. It is anticipated, therefore, that studies of the development of the flagellar apparatus in amoebo-flagellates, one of the most primitive organisms, will enhance our understanding of the evolution of motility in eukaryotes.

Keywords

Selective Advantage Basal Body Agar Surface Fibrous Protein Cytoplasmic Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wenyon, C. M., “Protozoology,” Woods and Co., New York, 1926.Google Scholar
  2. 2.
    Hyman, L. H., “Invertebrates,” McGraw-Hill, New York 1940.Google Scholar
  3. 3.
    Corliss, J. O., Systematic Zool, 8 169 (1959).CrossRefGoogle Scholar
  4. 4.
    Klein, R. M., and Cronquist, A., Quart. Rev. Biol. 42, 105 (1967).PubMedGoogle Scholar
  5. 5.
    Page, F. C., J. Protozool. 14, 499 (1967).PubMedGoogle Scholar
  6. 6.
    Kudo, R. R., “Protozoology,” 5th Ed., Thomas, Springfield, Ill. 1966.Google Scholar
  7. 7.
    Fulton, C., in “Methods in Cell Physiology,” (D. M. Prescott, ed.), Vol. IV, p. 341, 1970.Google Scholar
  8. 8.
    Bunting, M., Proc. Natl. Acad. Sci. U. S. 8, 294 (1922).Google Scholar
  9. 9.
    Bunting, M., J. Morph. 42, 23 (1926).CrossRefGoogle Scholar
  10. 10.
    Cadman, E. J., Trans. Roy. Soc. Edinburgh 57, 93 (1931).Google Scholar
  11. 11.
    Schardinger, F., Sitzungsb. Akad. Wiss. (Wien) Math. Nat. Cl. Abt. I 108, 713 (1899).Google Scholar
  12. 12.
    Yuyama, S., in “The Developmental Aspects of Cell Cycle” (I. L. Cameron, G. M. Padilla, and A. M. Zimmerman, eds.), Academic Press, New York, 1971.Google Scholar
  13. 13.
    Calkins, G. N., Trans. 15th Intern. Congr. Hygene Dem. Washington 2, 287 (1913).Google Scholar
  14. 14.
    Nilson, C. W., Univ. Calif. Pub. Zool. 16, 241 (1916).Google Scholar
  15. 15.
    Pietschmann, K., Arch. Protistenk. 65, 379 (1929).Google Scholar
  16. 16.
    Rafalko, J. S., J. Morph. 81, 1 (1947).PubMedCrossRefGoogle Scholar
  17. 17.
    Singh, B. N., Phil. Trans. Roy. Soc. London B 236, 405 (1952).CrossRefGoogle Scholar
  18. 18.
    Schuster, F. L., J. Protozool. 10, 297 (1963).PubMedGoogle Scholar
  19. 19.
    Dingle, A. D., and Fulton, C., J. Cell. Biol. 31, 43 (1966).PubMedCrossRefGoogle Scholar
  20. 20.
    Fulton, C., and Dingle, A. D., Develop. Biol. 15, 165 (1967).PubMedCrossRefGoogle Scholar
  21. 21.
    Yuyama, S., Ph. D. Thesis, Case- Western Reserve University, Cleveland, Ohio (1967).Google Scholar
  22. 21.
    Yuyama, S., Ph. D. Thesis, Case- Western Reserve University, Cleveland, Ohio (1967).Google Scholar
  23. 23.
    Dingle, A. D., J. Cell. Sci. 7, 463 (1970).PubMedGoogle Scholar
  24. 24.
    Willmer, E. N., J. Exp. Biol. 33, 583 (1956).Google Scholar
  25. 25.
    Willmer, E. N., J. Embryol. Exp. Morph. 6, 187 (1958).Google Scholar
  26. 26.
    Chang, S. L., J. Gen. Microbiol. 18, 579 (1958).PubMedGoogle Scholar
  27. 27.
    Yuyama, S., unpublished observation.Google Scholar
  28. 28.
    Yuyama, S., Biophys. J. (Suppl.) 6, 110 (1966).Google Scholar
  29. 29.
    Yuyama, S., J. Protozool. 18, 337 (1971).PubMedGoogle Scholar
  30. 30.
    Perkins, D. L., and Jahn, T. J., J. Protozool. 17, 168 (1970). 3. 1.Google Scholar
  31. Fulton, C., and Guerrini, A. M., Exptl. Cell Res. 56, 194 (1969). 32.Google Scholar
  32. Fulton, C., J. Cell. Biol. 47, 67a (1970).Google Scholar
  33. 33.
    Walsh, C., J. Cell. Biol. 47, 219a (1970).Google Scholar
  34. 34.
    Inoue, S., Rev. Mod. Phys. 31, 402 (1959).CrossRefGoogle Scholar
  35. 35.
    Outka, D. E., J. Protozool. 12, 85 (1965).Google Scholar
  36. 36.
    Fulton, C., Science 167, 1269 (1970).PubMedCrossRefGoogle Scholar
  37. 37.
    Kerr, N. S., J. Protozool. 7, 103 (1960).Google Scholar
  38. 38.
    Kerr, N. S., J. Protozool. 12, 85 (1965).Google Scholar
  39. 39.
    Haskins, E. F., Can. J. Microbiol. 14, 1309 (1968).PubMedCrossRefGoogle Scholar
  40. 40.
    Schuster, F. L., Protistologia 1, 49 (1965).Google Scholar
  41. 41.
    Goss, P. R., J. Exp. Zool. 157, 21 (1964).CrossRefGoogle Scholar
  42. 42.
    Raff, R. A., Greenhouse, G., Gross, K. W., and Gross, P. R.Google Scholar
  43. J. Cell. Biol. 50, 516 (1971).Google Scholar
  44. 43.
    Rustad, R. C., and Yuyama, S., in preparation.Google Scholar
  45. 44.
    Adler, S., and Theodor, O., Proc. Roy. Soc. London B 108, 453 (1931).CrossRefGoogle Scholar
  46. 45.
    Trager, W., J. Exp. Medicine 97, 177 (1953).CrossRefGoogle Scholar
  47. 46.
    Sagan, L., J. Theor. Biol. 14, 225 (1967).CrossRefGoogle Scholar
  48. 47.
    Copeland, H. F., “The Classification of the Lower Organisms,” Pacific Books, Palo Alto, Calif. 1956.Google Scholar
  49. 48.
    Lwoff, A., “Problems of Morphogenesis in Ciliates,” Wiley and Sons, New York, 1950.Google Scholar
  50. 49.
    Randall, J. T., and Disbrey, C., Proc. Roy. Soc. London B 162, 473 (1965).CrossRefGoogle Scholar
  51. 50.
    Smith-Sonneborn, J., and Plaut, W., J. Cell Sci. 2, 225 (1967).PubMedGoogle Scholar
  52. 51.
    Smith-Sonneborn, J., and Plaut, W., J. Cell Sci. 5, 365 (1969).PubMedGoogle Scholar
  53. 52.
    Gall, J. G., J. Biophys. Biochem. Cytol. 10, 163 (1961).CrossRefGoogle Scholar
  54. 53.
    Andre, J., J. Microscopie 3, 23 (1964).Google Scholar
  55. 54.
    Sorokin, S., J. Cell. Sci. 3, 207 (1968).PubMedGoogle Scholar
  56. 55.
    Robins, E., Jentzsch, G.,-and Micali, A., J. Cell. Biol. 36, 329 (1968).Google Scholar
  57. 56..
    P., J. Cell Biol. 51, 286 (1971).CrossRefGoogle Scholar
  58. 57.
    I., and Porter, K. R., Z. Zellforsch, 100, 1 (1V., Proc. Natl. Acad. Sci. U. S. 61, 461 (1968).Google Scholar
  59. 59.
    R., J. Biophys. Biochem. Cytol. 11, 244 (1961).CrossRefGoogle Scholar
  60. 60.
    K. M., and Nilova, V. K., Tsitologiya 7, 431 (19Google Scholar
  61. 61.
    B. R., and Weijer, J., Canad. J. Genet. Cytol(1966).Google Scholar
  62. 62.
    Fulton, C., in “Results and Problems in Cell Differentiation” (J. Reinert and H. Ursprung, eds.), Vol. 2, p. 170, Springer-Verlag Berlin, 1971.Google Scholar
  63. 63.
    Wessells, N. K., Spooner, B. S., Ash, J. F., Bradley, M. O., Luduena, M. A., Taylor, E. L., Wrenn, J. T., and Yamada,K. M., Science 171, 135 (1971).PubMedCrossRefGoogle Scholar
  64. 64.
    Satir, P., and Satir, B., J. Theoret. Biol. 7, 123 (1964).CrossRefGoogle Scholar
  65. 65.
    Mazia, D., in “The Cell” (J. Brachet and A. E. Mirsky, eds.), Vol. 3, p. 77, Academic Press, New York, 1961.Google Scholar
  66. 66.
    Rappaport, R., J. Theor. Biol. 9, 51 (1965).PubMedCrossRefGoogle Scholar
  67. 67.
    Yuyama, S., Biol. Bull. 140, 339 (1971).PubMedCrossRefGoogle Scholar
  68. 68.
    Wolpert, L., Int. Rev. Cytol. 10, 164 (1960).Google Scholar
  69. 69.
    Stephens, R. E., in “Biological Macromolecules” (S. N. Timasheff and G. D. Fasman, eds.), Vol. 5, Marcel Dekker, New York, 1971.Google Scholar

Copyright information

© Plenum Press 1972

Authors and Affiliations

  • Shuhei Yuyama
    • 1
  1. 1.Department of ZoologyUniversity of TorontoTorontoCanada

Personalised recommendations