Advertisement

Studies on an Extreme Thermophile

Flavobacterium thermophilum HB 8
  • Tairo Oshima

Abstract

The growth of microorganisms under such extreme environmental conditions as high salt content, low or high temperatures, and very low pH has been known for many years. Thermophiles, microorganisms that have the ability to grow at high temperature (at or above 50°C), were first described by P. Miguel in 1888 (1–3). Since then, thermophiles isolated from compost, sewage, cultivated soil, mud, waters, and even in ocean bottom mud and freshly fallen snow, have been objects of biological interest. Information accumulated on the physiology of growth at high temperature has been summarized in many review papers (1–11).

Keywords

Circular Dichroism Spectrum Thermal Water Ammonium Sulfate Fractionation Thermophile Enzyme Maximal Growth Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miguel, P., Ann. Micrographie, 1, 3 (1888).Google Scholar
  2. Robertson, A. H., Tech. Bull. N. Y. State Agr. Expt. Sta., No. 130 (1927).Google Scholar
  3. 2.
    Gaughran, E. R. L., Bact. Rev. 11, 189 (1947).Google Scholar
  4. 3.
    Allen, M. B., Bact. Rev. 17, 125 (1953).PubMedGoogle Scholar
  5. 4.
    Keffler, H., Bact. Rev. 21, 227 (1957).Google Scholar
  6. 5.
    Kempner, E. S., Science 142, 1318 (1963).PubMedCrossRefGoogle Scholar
  7. 6.
    Brock, T. D., Science 158, 1012 (1967).PubMedCrossRefGoogle Scholar
  8. 7.
    Campbell, L. L.,and Pace, B., J. Appl. Bact. 31, 24 (1968).CrossRefGoogle Scholar
  9. 8.
    Gillespy, T. G., and Thorpe, R. H., J. Appl. Bact. 31, 59 (1968).CrossRefGoogle Scholar
  10. 9.
    Friedman, S. M., Bact. Rev. 32, 27 (1968).PubMedGoogle Scholar
  11. 10.
    Brock, T. D., Ann. Rev. Ecology and Systematics, 1, 191 (1970); “Microbial Growth” (P. M. Meadow and S. J. Pirt, eds.), p. 15. Cambridge University Press, London, 1969.Google Scholar
  12. 11.
    Farrell, J., and Rose, A., Ann. Rev. Microbiol. 21, 101 (1967); Loginova, L. G., Golovacheva, R. S., andEgorova, L. A., “Microbial Life at High Temperatures,” Nauka, Moscow, 1966.Google Scholar
  13. 12.
    Oshima, T., and Imahor, K., J. Gen. Appl. Microbiol. 17, 513 (1971).CrossRefGoogle Scholar
  14. 13.
    Oshima, T., and Imahori, K., in preparation.Google Scholar
  15. 14.
    Breed, R. S., Murray, E. G. D., and Smith, N. R., “Bergey’s Manual of Determinative Bacteriology” Seventh Edition, Williams and Wilkins, Baltimore, 1957.Google Scholar
  16. 15.
    Emoto, Y., Onsenkogaku Zasshi 6, 29 (1968).Google Scholar
  17. 16.
    Goto, E., Imai, H., and Ito, Y., Onsen Kagaku 16, 144 (1966).Google Scholar
  18. 17.
    Brock, T. D., and Freeze, H., J. Bacteriol. 98, 289 (1969).PubMedGoogle Scholar
  19. 18.
    Oshima, T., and Imahori, K., in preparation.Google Scholar
  20. 19.
    Sueoka, N., in “The Bacteria’ (I. C. Gunsalus and R. Y. Stanier, eds), Vol. V, p. 419. Academic Press, New YorkandLondon, 1964 ).Google Scholar
  21. 20.
    Scaletti, J. V., and Naylor, H. B., J. Bacteriol. 78, 422 (1959).PubMedGoogle Scholar
  22. 21.
    Zimmer, C., and Venner, H., Hoppe-Seyler’s Z. Physiol. Chem. 333, 20 (1963).PubMedCrossRefGoogle Scholar
  23. 22.
    Dutta, S. K., Jones, A. S., and Stacey, M., J. Gen. Microbiol. 14, 160 (1956).PubMedGoogle Scholar
  24. 23.
    Sueoka, N., Proc. Natl. Acad. Sci. U. S. 47, 1141 (1961).Google Scholar
  25. 24.
    Milman, G., Langridge, R., and Chamberlin, M. J., Proc. Natl. Acad. Sci. U. S. 57, 1804 (1967).Google Scholar
  26. 25.
    Tsuboi, M., and Higuchi, S., Proteins, Nucleic Acids, Enzymes (Tokyo) 13, 533 (1968).Google Scholar
  27. 26.
    Tunis-Schneider, M. J. B., and Maestre, M. F., J. Mol. Biol. 52, 521 (1970).PubMedCrossRefGoogle Scholar
  28. 27.
    Mangiantini, M. T., Tecce, G., Toschi, G., and Trentalance, A., Biochim. Biophs. Acta 103, 252 (1965).Google Scholar
  29. 28.
    Saunders, G. F., and Campbell, L. L., J. Bacteriol. 91, 332 (1966).PubMedGoogle Scholar
  30. 29.
    Friedman, S., and Weinstein, I., Biochim. Biophys. Acta, 114 593 (1966).PubMedGoogle Scholar
  31. 30.
    Zeikus, J. G., Taylor, M. N., and Brock, T. D., Biochim Bio-phys. Acta, 204 512 (1970).Google Scholar
  32. 31.
    Gannis, R. B., and Cantor, C. R., Biochemistry 9, 4714 (1970).CrossRefGoogle Scholar
  33. 32.
    Watanabe, K., Reno, T., Nishimura, S., Oshima, T., and Imahori, K., Polymer J. submitted.Google Scholar
  34. 33.
    Dube, S. K., Marcker, K. A., Clark, B. F. C., and Cory, S., Nature 218, 232 (1968).PubMedCrossRefGoogle Scholar
  35. 34.
    Takasaki, Y., Oshima, T., and Imahori, K., to be published.Google Scholar
  36. 35.
    Pace, B., and Campbell, L. L., Proc. Natl. Acad. Sci. U. S. 57, 1110 (1967).Google Scholar
  37. 36.
    Yoshida, M., Oshima, T., and Imahori, K., Biochem. Biophys Res. Commun. 43, 36 (1971)PubMedCrossRefGoogle Scholar
  38. 37.
    Fujita, S., Oshima, T., and Imahori, K., Seikagaku 43, 505 (1971).Google Scholar
  39. 38.
    Freeze, H., and Brock, T. D., J. Bacteriol. 101, 541 (1970).PubMedGoogle Scholar
  40. 39.
    Yoshizaki, F., Oshima, T., and Imahori, K., J. Biochem. 69, 1083 (1971).PubMedGoogle Scholar
  41. 40.
    Scrutton, M. C., and Utter, M. F., Ann. Rev. Biochem. 37, 249 (1968).CrossRefGoogle Scholar
  42. 41.
    Stadtman, E. R., Advan. Enzymol. 28, 41 (1966).Google Scholar
  43. 42.
    Yoshida, M., and Oshima, T., Biochem. Biophys. Res. Commun., 45, 495 (1971).PubMedCrossRefGoogle Scholar
  44. 43.
    Yoshizaki, F., Oshima, T., and Imahori, K., Seikagaku 43, 582 (1971).Google Scholar
  45. 44.
    Cleland, W. W., Biochim. Biophys. Acta 67, 104 (1963).PubMedCrossRefGoogle Scholar
  46. 45.
    Najjar, V. A., in “The Enzymes” (P. D. Boyer, H. Lardy and K. Myrback, eds.), 2nd ed., Vol. 6, p. 161. Academic Press, New York and London, 1962.Google Scholar
  47. 46.
    Joshi, J. G., and Handler, P., J. Biol. Chem. 239, 2741 (1964).PubMedGoogle Scholar
  48. 47.
    Hanabusa, K., Dougherty, H. W., Del Rio, C., Hashimoto, T., and Handler, P., J. Biol. Chem. 241, 3930 (1966).PubMedGoogle Scholar
  49. 48.
    Harris, J. I., in Pyridine Nucleotide-Dependent Dehydrogenases“ ( H. Sund Ed.) p. 57. Springer, Berlin, 1970.CrossRefGoogle Scholar
  50. 49.
    Heilbrunn, L. V., Am. J. Physiol. 69, 190 (1924).Google Scholar
  51. 50.
    Belehradek, J., Protoplasma 12, 406 (1931).CrossRefGoogle Scholar
  52. 51.
    Oshima, M., Seikagaku 42, 432 (1970).Google Scholar
  53. 52.
    Imahori, K., and Watanabe, K., Polymer Symposia 30, 633 (1970).CrossRefGoogle Scholar
  54. 53.
    Suzuki, K., and Harris, J. I., FEBS Letters 13, 217 (1971).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press 1972

Authors and Affiliations

  • Tairo Oshima
    • 1
  1. 1.Mitsubishi Kasei Institute of Life SciencesMachida, TokyoJapan

Personalised recommendations