Advertisement

Informational Biopolymer Structure in Early Living Forms

  • M. O. Dayhoff
  • P. J. McLaughlin
  • W. C. Barker
  • L. T. Hunt

Abstract

The conservative nature of the evolutionary process has preserved in all living species “relics” of the biochemical nature of ancient organisms, including those which lived before the ordinary fossil record was formed. Protein and nucleic acid sequences provide evidence which is particularly amenable to quantitation because certain generally applicable and theoretically understandable principles have characterized their evolution; therefore, it is possible to apply logical and statistical methods to the data to extrapolate into the past. The biochemical evidence in protein and nucleic acid structures can provide information from which to construct a phylogenetic tree encompassing all the main lines of living organisms. Further, it can reveal the nature of ancient molecules in ancestral organisms and of the evolutionary process, and finally it can provide a time scale for measuring the relative antiquity of species divergences and gene duplications. By tracing the course of evolution of the more slowly evolving molecules, we may eventually be able to infer much about the protein and nucleic acid structures in what we have termed the “proto-organism”--the most recent common ancestor of all presently living species, which existed more than 3 billion years ago--and even in the more primitive organisms in the evolutionary line that preceded it. Potentially much information regarding the structure of informational bio-polymers can be elicited; there is sufficient DNA. to code for several thousand different kinds of proteins (of 500 residues) in the bacterium Escherichia coli and for more than a million kinds in a human being. Many re-lated proteins and nucleic acids are found throughout a wide range of organisms--from bacteria to multicellular animals and plants. Chemical structures from five such families of informational molecules in very diverse organisms have now been examined: cytochrome c, ferredoxin, trypsin, transfer ribonucleic acid (RNA), and 5S ribosomal RNA (1). Even from these few, we can draw some interesting inferences about early living organisms.

Keywords

Genetic Code Evolutionary Distance Versus Versus Versus Versus Versus Versus Versus Versus Versus tRNA Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dayhoff, M. O., ed. “Atlas of Protein Sequence and Structure 1972,” NatL Biomedical Res. Fnd., Washington, D. C., 1972.Google Scholar
  2. 2.
    Dayhoff, M. O., and Eck, R. V., in “Atlas of Protein Sequence and Structure 1969, ” M. O. Dayhoff, ed., Vol. 4, pp. 1–5, Natl. Biomedical Res. Fnd., Silver Spring, Md., 1969.Google Scholar
  3. 3.
    Dayhoff, M. O., and McLaughlin, P. J., in “Atlas of Protein Se-quence and Structure 1969, ” M. O. Dayhoff, ed., _Vol. 4, pp. 8994 (Chap. 11: Transfer RNA), Natl. Biomedical Res. Fnd., Silver Spring, Md., 1969.Google Scholar
  4. 4.
    Sagan, L., J. Theor. Biol. 14, p. 225 (1967).CrossRefGoogle Scholar
  5. 5.
    Margulis, L., Science 161, 1020 (1968).PubMedCrossRefGoogle Scholar
  6. 6.
    Margulis, L., “Origin of Eukaryotic Cells,” Yale Univ. Press, New Haven, 1970.Google Scholar
  7. 7.
    Dayhoff, M. O., Park, C. M., and McLaughlin, P. J., in “Atlas of Protein Sequence and Structure 1972, ” M.O. Dayhoff, ed._ Vol. 5, pp. 7–16 (Chap. 2: Cytochrome c) Natl. Biomedical Res. Fnd., Washington, D. C., 1972.Google Scholar
  8. 8.
    Young, J. Z., “The Life of Vertebrates,” 2nd ed., Oxford Univ. Press, New York, 1962.Google Scholar
  9. 9.
    Dayhoff, M. O., Eck, R. V., and Park, C. M., in ’’Atlas of Protein Sequence and Structure 1969,“ M. O. Dayhoff, ed., Vol. 4, pp. 75–83, (Ch. 9: A Model of Evolutionary Change in Proteins), Natl. Biomedical Res. Fnd., Silver Spring, Md., 1969.Google Scholar
  10. 10.
    Hirschmann, R., Nutt, R. F., Verber, D. F., Vitali, R. A., Varga, S. L., Jacob, T. A., Holly, F. W., and Denkewalter, R. G., J. Am. Chem. Soc. 91, 507 (1969).PubMedCrossRefGoogle Scholar
  11. 11.
    Lutte, B., and Merrifield, R. B., J. Am. Chem. Soc. 91, 501 (1969).CrossRefGoogle Scholar
  12. 12.
    Kimura, M., Proc. Natl. Acad. Sci. U.S. 63, 1181 (1969).Google Scholar
  13. 13.
    Berry, W. B. N., “Growth of a Prehistoric Time Scale,” p. 9, W. H. Freeman, San Francisco, 1968.Google Scholar
  14. 14.
    Romer, A. S., “Vertebrate Paleontology,” 3rd ed., Univ. Chicago Press, Chicago, 1966.Google Scholar
  15. 15.
    Barghoorn, E. S., and Schopf, J. W., Science 152, 758 (1966).PubMedCrossRefGoogle Scholar
  16. 16.
    Barghoorn, E. S., and Tyler, S. A., Science 147, 563 (1965).PubMedCrossRefGoogle Scholar
  17. 17.
    Jukes, T. H., Biochem. Biophys. Res. Commun. 24, 744 (1966).Google Scholar
  18. 18.
    Eck, R. V., and Dayhoff, M. O., “Atlas of Protein Sequence and Structure 1966, ” pp. 141–147, Natl. Biomedical Res. Fnd., Silver Spring, Md., 1966.Google Scholar
  19. 19.
    Crick, F. H. C., J. Mol. Biol. 38, 367 (1968).PubMedCrossRefGoogle Scholar
  20. 20.
    Orgel, L. E., J. Mol. Biol. 38, 381 (1968).PubMedCrossRefGoogle Scholar
  21. 21.
    Rutten, M. G.,-Space Life Sci. 1, 1 (1970).Google Scholar
  22. 22.
    Rutten, M. G., The Geological Aspects of the Origin of Life on Earth,“ Elsevier, New York, 1962.Google Scholar
  23. 23.
    Calvin, M., “Chemical Evolution,” Oxford Univ. Press, NewYork, 1969.Google Scholar
  24. 24.
    Eck, R. V., and Dayhoff, M. O., Science 152, 363 (1966).PubMedCrossRefGoogle Scholar
  25. 25.
    Jukes, T. H., “Molecules and Evolution,” Columbia Uoiv. Press, New York, 1966.Google Scholar
  26. 26.
    Matsubara, H., Jukes, T. H., and Cantor, C. R., Brookhaven Symp. Biol. 21 (“Structure, Function and Evolution in Proteins”) 201 (1969).Google Scholar
  27. 27.
    Atkin, N. B., and Ohno, S., Chromosoma 23, 10 (1967).CrossRefGoogle Scholar
  28. 28.
    Ohno, S., Wolf, U., and Atkin, N. B., Hereditas 59, 169 (1968).PubMedCrossRefGoogle Scholar
  29. 29.
    Birktoft, J. J., Matthews, B. W., and Blow, D. M., Biochem. Biophys. Res. Commun. 36, 131 (1969).Google Scholar
  30. 30.
    Shotton, D. M., and Watson, H. C., Nature 225, 811 (1970).PubMedCrossRefGoogle Scholar
  31. 31.
    Stroud, R. M., Kay, L. M., and Dickerson, R. E., Cold Spring Harbor Symp. Quant. Biol. 36, 125 (1972).CrossRefGoogle Scholar
  32. 32.
    Kellogg, D. A., Doctor, B. P., Loebel, J. E., and Nirenberg, M. W., Proc. Natl. Acad. Sci. U.S. 55, 912 (1966).Google Scholar
  33. 33.
    Mirzabekov, A. D., Grunberger, D., Krutilina, A. I., Holy, A., Bayev, A. A., and Sorm, F., Biochim. Biophys. Acta. 166, 75 (1968).Google Scholar
  34. 34.
    Soll, D., Cherayil, J., Jones, D. S., Faulkner, R. D., Hampel, A., Bock, R. M., and Khorana, H. G., Cold Spring Harbor Symp. Quant. Biol. 31, 51 (1966).CrossRefGoogle Scholar
  35. 35.
    McLaughlin, P. J., and Dayhoff, M. O., Science 168, 1469 (1970).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press 1972

Authors and Affiliations

  • M. O. Dayhoff
    • 1
  • P. J. McLaughlin
    • 1
  • W. C. Barker
    • 1
  • L. T. Hunt
    • 1
  1. 1.National Biomedical Research FoundationGeorgetown University Medical CenterUSA

Personalised recommendations