Syntheses and Conformational Studies of Polyacidic Amino Acids Containing Optical Active Side Chains

  • Tadao Hayakawa
  • Hiroyuki Yamamoto


The syntheses and physicochemical properties of poly ( β-alkyl aspartate) and poly( γ-alkyl glutamate) have been widely investigated (1–11). Optical rotatory dispersion (ORD) and circular dichroism (CD) have led to the conclusion that many L-polypeptides have a right-handed helical sense. Poly( γ-alkyl L-glutamate) assumes a right-handed helical conformation in a solvent such as chloroform, while it assumes a disordered conformation in a solvent such as dichloroacetic acid (DCA) or trifluoroacetic acid (TFA). Polymers of β-methyl and β-benzyl L-aspartates represent exceptions to the general rule and exist as left-handed helices in chloroform and in methylene dichloride solutions. The introduction of a nitro, methyl, chloro, or cyano group into the para position of the aromatic ring in the side chain of poly( β-benzyl L-aspartate) causes a reversal of the left-handed helix of the poly- α-amino acid in chloroform (12, 13). In addition, poly( β-benzyl L-aspartate) is known to undergo a polymorphic transition from the α-helix to the ω-helix when a solid film is heated in vacuo (14).


Circular Dichroism Random Coil Random Coil Structure Coil Transition Optical Rotatory Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coleman, D.,J. Chem. Soc. 1951, 2294.Google Scholar
  2. 2.
    Bradbury, E. M., Carpenter, B. G., and Goldman, H., Biopolymers 6 837 (1968).CrossRefGoogle Scholar
  3. 3.
    Frankel, M., and Berger, A., J. Org. Chem. 16, 1513 (1951).CrossRefGoogle Scholar
  4. 4.
    Berger, A., and Katchalski, E., J. Am. Chem. Soc. 73, 4084 (1951).CrossRefGoogle Scholar
  5. 5.
    Karlson, R. H., Norland, K. S.,Fasman, G. D., and Blout, E. R., J. Am. Chem. Soc. 82, 2268 (1960).CrossRefGoogle Scholar
  6. 6.
    Blout, E. R., and Karlson, R. H., J. Am. Chem. Soc. 80, 1259 (1958).CrossRefGoogle Scholar
  7. 7.
    Bamford, C. H., Elliott, A., and Hanby, W. E., “Synthetic Polypeptides,” Academic Press, New York, 1956.Google Scholar
  8. 8.
    Katchalski, E., and Sela, M., Advan. Protein Chem. 13, 243 (1958).CrossRefGoogle Scholar
  9. 9.
    Sugai, S., Kamashima, K., Makino, S., and Noguchi, J., J. Polym. Sci. A-2, 4, 183 (1966).CrossRefGoogle Scholar
  10. 10.
    Adler, A. J., Fasman, G. D., and Blout, E. R., J. Am. Chem. Soc. 85, 90 (1963).CrossRefGoogle Scholar
  11. 11.
    Blout, E. R., and Asadourian, A., J. Am. Chem. Soc., 78, 955 (1956).CrossRefGoogle Scholar
  12. 12.
    Goodman, M., Deber, C. M., and Felix, M., J. Am. Chem. Soc 84, 3773 (1962).CrossRefGoogle Scholar
  13. 13.
    Hashimoto, M., and Aritomi, J., Bull. Chem. Soc. Japan, 39, 2707 (1966).CrossRefGoogle Scholar
  14. 14.
    Bradbury, E. M., Carpenter, B. G., and Stephans, R. M., Bio-polymers 6, 905 (1968).Google Scholar
  15. 15.
    Frankel, M., Liwschitz, Y., and Zilkla, A., J. Am. Chem. Soc. 75, 3270 (1953).CrossRefGoogle Scholar
  16. 16.
    Ariely, S., Fridkin, M., and Patchornic, A., Biopolymers 7, 417 (1969).CrossRefGoogle Scholar
  17. 17.
    Yamamoto, H., Kondo, Y., and Hayakawa, T., Biopolymers 9, 41 (1970).CrossRefGoogle Scholar
  18. 18.
    Yamamoto, H., and Hayakawa, T., Biopolymers 10, 309 (1971).PubMedCrossRefGoogle Scholar
  19. 19.
    Yamamoto, H., and Hayakawa, T., Bull. Chem. Soc. Japan 44, 1990 (1971).Google Scholar
  20. 20.
    Hayakawa, T., Yamamoto, H., and Aoto, N., Biopolymers 11, 185 (1972).PubMedCrossRefGoogle Scholar
  21. 21.
    Sela, M., and Berger, A., J.Google Scholar
  22. 22.
    Doty, P., Bradbury, T. H., Soc. 78, 947 (1956).Google Scholar
  23. 23.
    Moffitt, W., and Yang, J. T. 596 (1956).Google Scholar
  24. 24.
    Yang, J. T., in “Poly-a -Amino Acids,” (G. D. Fasman, ed.), p. 239. Marcel Dekker Inc., New York, 1967.Google Scholar
  25. 25.
    Carver, J. P., Shechter, E., and Blout, E. R., J. Am. Chem. Soc. 88, 2550 (1966).CrossRefGoogle Scholar
  26. 26.
    Ingwall, R. T., Scheraga, H. A., Lotan, N., Berger, A., and Katchalski, E., Biopolymers 6, 331 (1968).PubMedCrossRefGoogle Scholar
  27. 27.
    Holzwarth, G., and Doty, P., J. Am. Chem. Soc. 87, 218 (1965).PubMedCrossRefGoogle Scholar
  28. 28.
    Fasman, G. D., in “Polyamino acids, Polypeptides and Proteins” (M. A. Stahman, ed.), p. 221. University of Wisconsin Press, Madison, 1962.Google Scholar
  29. 29.
    Goodman, M., Boardman, F., and Litowsky, L., J. Am. Chem. Soc. 85, 2491 (1963).CrossRefGoogle Scholar
  30. 30.
    Goodman, M., and Benedetti, E., Biochemistry 7, 4226 (1968).PubMedCrossRefGoogle Scholar
  31. 31.
    Goodman, M., and Kossay, A., J. Am. Chem. Soc. 88, 5010 (1966).CrossRefGoogle Scholar
  32. 32.
    Toniolo, C., Falxa, M. L., and Goodman, M., Biopolvmers 6, 1579 (1968).CrossRefGoogle Scholar
  33. 33.
    Sarker, P. K., and Doty, P., Proc. Natl. Acad. Sci. U. S. 45, 1601 (1959).Google Scholar
  34. 34.
    Kubota, S., Sugai, S., and Noguchi, J., Biopolymers 6, 1311 (1968).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press 1972

Authors and Affiliations

  • Tadao Hayakawa
    • 1
  • Hiroyuki Yamamoto
    • 1
  1. 1.Institute of High Polymer Research, Faculty of Textile Science and TechnologyShinshu UniversityUedaJapan

Personalised recommendations