Advertisement

Stereo-Enriched Poly-α-Amino Acids: Synthesis Under Postulated Prebiotic Conditions

  • Duane L. Rohlfing
  • Clarence E. FoucheJr.

Abstract

In 1954, Fox and Middlebrook reported (1) that some amino acids common to protein copolymerize thermally, under simulated prebiotic conditions. Many subsequent studies (reviewed in references 2 and 3) have extended the thermal method to produce oligo- or hetero-tonic (4) polyamino acids [termed proteinoid when some of each of the proteinous (5) amino acids are incorporated]. The thermal polymers exhibit many properties in common with present-day protein, including molecular weight range, catalytic activity, non-randomness, selective associations, and morphogenecity. They are regarded as models for prebiotic protein (2 – 4).

Keywords

Glutamic Acid Optical Purity Thermal Polymer Pyroglutamic Acid Prebiotic Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fox, S. W., and Middlebrook, M., Federation Proc. 13, 221 (1954).Google Scholar
  2. 2.
    Fox, S. W., Nature 205, 328 (1965).PubMedCrossRefGoogle Scholar
  3. 3.
    Fox, S. W., Naturwissenschaften 56, 1 (1969).PubMedCrossRefGoogle Scholar
  4. 4.
    Rohlfing, D. L., and Fox, S. W., Advances Catal. 20, 373 (1969).CrossRefGoogle Scholar
  5. 5.
    Hayakawa, T., Windsor, C. R., and Fox, S. W., Arch. Biochem. Biophys. 118, 265 (1968).CrossRefGoogle Scholar
  6. 6.
    Rohlfing, D. L., Ph. D. Dissertation, Florida State University, 1964.Google Scholar
  7. 7.
    Heinrich, M. R., Rohlfing, D. L., and Bugna, E. Arch. Biochem. Biophys. 130, 441 (1969).CrossRefGoogle Scholar
  8. 8.
    Fox, S. W., and Harada, K., J. Am. Chem. Soc. 82, 3745 (1960).CrossRefGoogle Scholar
  9. 9.
    Fox, S. W., Harada, K., and Rohlfing, D. L., in “Polyamino Acids, Polypeptides, and Proteins” (M. Stahmann, ed.), p. 47. University of Wisconsin Press, Madison, 1962.Google Scholar
  10. 10.
    Rohlfing, D. L., Nature 216, 657 (1967).CrossRefGoogle Scholar
  11. 11.
    Fouche, C. E.; Rohlfing, D. L., Bull. S. C. Acad. Sci. 33, 56–57 (1971).Google Scholar
  12. 12.
    Rohlfing, D. L., and Fouche, C. E., Federation Proc. 30, 1068 Abs. (1971).Google Scholar
  13. 13.
    Model 120C Amino Acid Analyzer“Instruction manual, Spinco Division, Beckman Instrument Co., Palo Alto, 1965.Google Scholar
  14. 14.
    Blackburn, S., “Amino Acid Determination; Methods and Techniques,” pp. 23–24. Dekker, New York, 1968.Google Scholar
  15. 15.
    Van Norman, R. W., “Experimental Biology,” Prentiss-Hall, Englewood Cliffs, N. J., 1971. pp. 244–246.Google Scholar
  16. 16.
    Hirs, C. H. W., Moore, S., and Stein, W. H., J. Am. Chem. Soc. 76, 6063 (1954).CrossRefGoogle Scholar
  17. 17.
    Moore, S., and Stein, W. H., J. Biol. Chem. 211, 907 (1954).PubMedGoogle Scholar
  18. 18.
    Levy, A. L., and Chung, D., J. Am Chem. Soc. 77, 2899 (1955).CrossRefGoogle Scholar
  19. 19.
    Greenstein, J. P., Birnbaum, S. M., and Otey, M. C., J. Biol. Chem. 204, 307 (1953).PubMedGoogle Scholar
  20. 20.
    Rao, K. R., and Sober, H. A., J. Am. Chem. Soc. 76, 1328 (1954).CrossRefGoogle Scholar
  21. 21.
    Pollock, G. E., and Oyama, V. I., J. Gas. Chrom. 4, 126 (1966).Google Scholar
  22. 22.
    Blackburn, S., op. cit., p. 15.Google Scholar
  23. 23.
    Harada, K., Bull. Chem. Soc. Japan 32, 1007 (1959).CrossRefGoogle Scholar
  24. 24.
    Jirgensens, B., “Optical Rotatory Dispersion of Proteins and Other Macromolecules,” Springer-Verlag, New York, 1969. p. 53.Google Scholar
  25. 25.
    Lemmon, R. M., Chem. Revs. 70, 95 (1970).CrossRefGoogle Scholar
  26. 26.
    Harada, K., and Fox, S. W., in “The Origins of Prebiological Systems” (S. W. Fox, ed.), p. 289. Academic Press, New York, 1965.Google Scholar
  27. 27.
    Hanafusa, H., and Akabori, S., Bull. Chem. Soc. Japan 32, 626 (1959).CrossRefGoogle Scholar
  28. 28.
    Harada, K., Nature 205, 590 (1965).CrossRefGoogle Scholar
  29. 29.
    Harada, K., Nature 206, 1354 (1965).PubMedCrossRefGoogle Scholar
  30. 30.
    Harada, K., Nature 194, 768 (1962).CrossRefGoogle Scholar
  31. 31.
    Stryer, L., in “Biology and the Exploration of Mars” (C. S. Pittendrigh, W. Vishniac, and J. P. T. Pearman, eds.), p. 141. National Academy of Sciences National Research Council, publication 1296, Washington, 1966.Google Scholar
  32. 32.
    Bresler, S. E., “Introduction to Molecular Biology,” p. 47ff Academic Press, New York, 1971.Google Scholar
  33. 33.
    Shecter, I., Benderly, H., Berger, A., Lotan, N., and Scheraga, H. A., Abstracts of Paper, Div. of Biol. Chem. No. 171A, 154th Meeting, Am. Chem. Soc., Chicago, 1967.Google Scholar
  34. 34.
    Krampitz, G., Diehl, S., and Nakashima, T. Naturwissenschaften 54, 516 (1967).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press 1972

Authors and Affiliations

  • Duane L. Rohlfing
    • 1
  • Clarence E. FoucheJr.
    • 1
  1. 1.Department of BiologyUniversity of South CarolinaColumbiaUSA

Personalised recommendations