Advertisement

Model Experiments on the Prebiological Formation of Protein

  • Shiro Akabori
  • Mihoko Yamamoto

Abstract

Since it was emphasized by Oparin (1) in 1957 that the formation of coacervate of Bungenberg de Yong (2) in the primitive ocean might have been the most important step of chemical evolution of life, the theory has been widely accepted by the workers in the field (3). The prerequisite for the formation of coacervate particles is the presence of high-molecular organic sutstances together with other biochemical substances. Among those high-molecular substances a long chain polypeptide must have been one of the most important ones.

Keywords

Amino Acid Mixture Diaminopimelic Acid Automatic Amino Acid Analyzer Catalytic Dehydrogenation Amino Acid Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oparin, A. I., “Die Entstehung des Lebens auf der Erde, ” Deutsche Verlag der Wissenschaften, Berlin, 1957; “The Origin of Life on the Earth,” Pergamon Press, New York, 1959.Google Scholar
  2. 2.
    Bungenberg de Yong, H., Protoplasma 15, 110 (1932); “La Coaservation,” Hermann, Paris, 1936.Google Scholar
  3. 3.
    Smith, A. E., Bellware, B. T., and Silver, J. J., Nature 214, 1038 (1967).PubMedCrossRefGoogle Scholar
  4. Liebl, V., and Lieblova, J., J. Br. Interplanet. Soc. 21, 312 (1968).Google Scholar
  5. 4.
    Akabori, S., I. U. B. Symposium Series, 1, 189 (1959).Google Scholar
  6. 5.
    Akabori, S., Hanafusa, H., Bull. Chem. Soc. Japan32, 626 (1959).Google Scholar
  7. 6.
    Akabori, S., Okawa, K., and Sato, M., ibid. 29, 608 (1956).Google Scholar
  8. 7.
    Sakakibara, S., ibid. 34, 205 (1961).Google Scholar
  9. 8.
    Losse, G., and Böhm, P., J. Prakt. Chem. 38, 69 (1968).CrossRefGoogle Scholar
  10. 9.
    Fox, S. W., Science 132, 200 (1960); Fox, S. W., Harada, K., and Kendrick, J., Science 129, 1221 (1959).PubMedCrossRefGoogle Scholar
  11. 10.
    Fox, S. W., and Harada, K., “A Laboratory Manual of Analytical Methods of Protein Chemistry,” Vol. 4, 129. Pergamon Press, New York, 1066; Fox, S. W. and Yuyama, S., Ann. N. Y. Acad. Sci., 108, 487 (1963).PubMedCrossRefGoogle Scholar
  12. 11.
    Dzugaj, A., Siemion, I. Z., and Ojrzynski, Z., Roczniki. Chem. 40, 1329 (1966).Google Scholar
  13. 12.
    Sasaki, T., and Hashimoto, T., Ber. Beutchen, Chem. Gesells. 54, 2688 (1921).Google Scholar
  14. 13.
    Elad, D., and Sperling, J., J. Chem. Soc. ©, 1969, 1579 (1969);Google Scholar
  15. Sperling, J., and Elad, D., J. Am. Chem. Soc. 93, 967 (1971).CrossRefGoogle Scholar
  16. 14.
    Work, E., Biochem. Biophys. Acta 3, 400 (1949).CrossRefGoogle Scholar
  17. 15.
    Work, E., and Dewey, D. L., J. Gen. Microbiol. 9, 394 (1953).PubMedGoogle Scholar
  18. 16.
    Holdsworth, E. S., Biochem. Biophys. Acta. 9, 19 (1952).CrossRefGoogle Scholar
  19. 17.
    Hamaguchi, T., J. Bacteriol. 89, 44 (1965).Google Scholar
  20. 18.
    Kingan, S. L., and Ensign, J. C., J. Bacteriol. 95, 724 (1968).PubMedGoogle Scholar

Copyright information

© Plenum Press 1972

Authors and Affiliations

  • Shiro Akabori
    • 1
  • Mihoko Yamamoto
    • 1
  1. 1.Protein Research FoundationIna, Minoo, OsakaJapan

Personalised recommendations