The Sources of Phosphorus on the Primitive Earth--An Inquiry

  • Alan W. Schwartz


One of the problems of chemical evolution which has remained a frustration to workers over the years is the question of the mechanism by means of which phosphorus might have entered into chemical reactions on the primitive Earth. A number of publications have discussed the incorporation or activation of orthophosphate under presumed pre-biotic conditions; however, the sources of phosphorus used in most of these experiments fail to meet the test of geological plausibility. In many cases concentrations of phosphate in aqueous solution have been employed which are many orders of magnitude higher than any that can be attained under natural conditions (1–4). In other, anhydrous experiments, salts of phosphoric acid have been utilized which do not naturally occur (5). Other phosphorylation experiments have depended upon the use of highly reactive condensed phosphates, the syntheses of which have not been demonstrated under geologically plausible conditions (6–9). Only a very few studies have dealt with sources of phosphate which are geologically significant, and these publications will be reviewed briefly below. Two pathways in particular may have played a role in phosphate incorporation on the primitive Earth, although rather special circumstances are involved. Finally, an alternative approach to the question will be considered to account for the prebiological availability of phosphorus. The hypothesis to be examined does not relate to a particular set of circumstances upon the primitive Earth, but rather to the process of the formation and differentiation of the Earth itself.


Chemical Evolution Parent Body Carbonaceous Chondrite Iron Meteorite Calcium Pyrophosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Steinman, G., Lemmon, R. M, and Calvin, M., Proc. Natl. Acad. Sci. U.S. 52, 27 (1964).Google Scholar
  2. 2.
    Halmann, M., Sanchez, R. A., and Orgel, L. E., J. Org. Chem. 34, 3702 (1969).CrossRefGoogle Scholar
  3. 3.
    Ferris, J. P., Science 161, 53 (1968).PubMedCrossRefGoogle Scholar
  4. 4.
    Lohrmann, R., and Orgel, L. E., Science 161, 64 (1968).PubMedCrossRefGoogle Scholar
  5. 5.
    Chang, S., Williams, J. A., Ponnamperuma, C., and Rabinowitz, J., Space Life Sci. 2, 144 (1970).PubMedCrossRefGoogle Scholar
  6. 6.
    Schramm, G., Grotsch, H., and Pollmann, W., Angew. Chem. Int. Ed. Engl. 1, 1 (1962).Google Scholar
  7. 7.
    Ponnamperuma, C., Sagan, C., and Mariner, R., Nature 199, 222 (1963).PubMedCrossRefGoogle Scholar
  8. 8.
    JVaenheldt, T. V., and Fox, S. W., Biochim. Biophys. Acta 134, 1 (1967).Google Scholar
  9. 9.
    Schwartz, A., and Ponnamperuma, C., Nature 218, 443 (1968).PubMedCrossRefGoogle Scholar
  10. 10.
    Gulick, A., American Scientist 43, 479 (1955).Google Scholar
  11. 11.
    Landergren, S., in “Geochemistry” (V. M. Goldschmidt, ed.), p. 454. Oxford University Press, London, 1958.Google Scholar
  12. 12.
    Gulbrandsen, R. A., Economic Geol. 64, 365 (1969).CrossRefGoogle Scholar
  13. 13.
    van Wazer, J. R., “Phosphorus and its Compounds,” p. 960. Inter-science, New York, 1958.Google Scholar
  14. 14.
    Miller, S. L., and Parris, M., Nature 204, 1248 (1964).CrossRefGoogle Scholar
  15. 15.
    Schwartz, A., and Ponnamperuma, C., in “Prebiotic andBiochemical Evolution” (Kimball and Oro, eds.) p. 78. North-Holland Amsterdam, 1971.Google Scholar
  16. 16.
    Neuman, M. W., Neuman, W. F., and Lane, K., Currents Mod. Biol. 3, 253 (1970).Google Scholar
  17. 17.
    van Wazer, J. R., op. cit., p. 958.Google Scholar
  18. 18.
    Hulett, H. R., J. Theoret. Biol. 24, 56 (1969).CrossRefGoogle Scholar
  19. 19.
    Lohrmann, R., and Orgel, L. E., Science 171, 490 (1971).PubMedCrossRefGoogle Scholar
  20. 20.
    Daul, G. C. and Reid, J. D., Chem. Abstr. 47, 920h (1953).Google Scholar
  21. 21.
    Schwartz, A. W., in “Chemical Evolution and the Origin of Life,” (Buvet and Ponnamperuma, eds.), p. 207. North-Holland, Amsterdam, 1971.Google Scholar
  22. 22.
    Akaboschi, M., Kawai, K., and Waki, A., Biochim. Biophys. Acta 238, 5 (1971).Google Scholar
  23. 23.
    Handbook of Chemistry and Physics,“ p. B-272. Chemical Rubber Co., Cleveland, 1969.Google Scholar
  24. 24.
    Schwartz, A. W., and Deuss, H., in “Theory and Experiment in Exobiology” Vol. I ( A. W. Schwartz, ed.), p. 73. Wolters-Noordhoff, Groningen, 1971.Google Scholar
  25. 25.
    van den Berg, L., and Soliman, F. S., Cryobiology 6, 10 (1969).PubMedCrossRefGoogle Scholar
  26. 26.
    Wang, S Y., Nature 190, 690 (1961).CrossRefGoogle Scholar
  27. 27.
    Sanchez, R. A., Ferris, J. P., and Orgel, L. E., J. Mol. Biol. 30, 223 (1967).PubMedGoogle Scholar
  28. 28.
    Fuchs, L. H., in “Meteorite Research” (P. M. Millman ed.), p. 683. D. Reidel, Dordrecht, 1969.Google Scholar
  29. 29.
    Doan, A. S., and Goldstein, J. I., ibid., p.;63.Google Scholar
  30. 30.
    Miller, S. L., and Urey, H. C., Science 130, 245 (1959).PubMedCrossRefGoogle Scholar
  31. 31.
    Singer, S. F., in Meteorite Research, p. 590.Google Scholar
  32. 32.
    Bar-Nun, A., Bar-Nun, N., Bauer, S. H., and Sagan, C., Science 168, 470 (1970).PubMedCrossRefGoogle Scholar
  33. 33.
    Keil, K., in “Handbook of Geochemistry” (K. H. Wedepohl, ed.), p. 78. Springer-Verlag, Berlin, 1969.Google Scholar
  34. 34.
    Mason, B., “Principles of Geochemistry,” p. 192. John Wiley & Sons, New York, 1966.Google Scholar
  35. 35.
    Levin, B. J., in “Meteorite Research,” p. 16.Google Scholar
  36. 36.
    Mason, B., in “Extraterrestrial Matter” (C. A. Randall, Jr., ed.), p. 3. Northern Illinois University Press, DeKalb, 1969.Google Scholar
  37. 37.
    Ringwood, A. E., Geochim Cosmochim. Acta 30, 41 (1966).Google Scholar
  38. 38.
    Anders, E., Accounts Chem. Res. 1, 289 (1968).CrossRefGoogle Scholar
  39. 39.
    Jacob, K. D., and Reynolds, D. S., Ind. Eng. Chem. 20, 1204 (1928).CrossRefGoogle Scholar
  40. 40.
    Ershov, V. A., Chem. Abstr. 67, 83493v (1967).Google Scholar
  41. 41.
    Brett, R., Geochim. Cosmochim. Acta 35, 203 (1971).CrossRefGoogle Scholar
  42. 42.
    Turekian, K. K., and Clark, S. P., Jr., Earth Planet Sci. Let. 6, 346 (1969).Google Scholar
  43. 43.
    Brunauer, S., and Schultz, J. F., Ind. Eng. Chem. 33, 828 (1941).CrossRefGoogle Scholar
  44. 44.
    Rabinowtiz, J., Woeller, F., Flores, J., and Krebsbach, R., Nature 224, 796 (1969).CrossRefGoogle Scholar
  45. 45.
    Haimann, M., in “Topics in Phosphorus Chemistry” (Grayson and Griffith, eds.), Vol. 4, p. 49. Interscience, New York, 1967.Google Scholar
  46. 46.
    Matsuura, N., Yoshimur, M., Takizawa, M., and Sakaki, Y., Bull. Chem. Soc. Japan 44, 1027 (1971).CrossRefGoogle Scholar
  47. 47.
    Schwartz, A. W., unpublished data.Google Scholar
  48. 48.
    Anderson, D. L., Applied Optics 8, 1271 (1969).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press 1972

Authors and Affiliations

  • Alan W. Schwartz
    • 1
  1. 1.Department of ExobiologyUniversity of NijmegenThe Netherlands

Personalised recommendations