Advertisement

Bioenergetics of Nerve Excitation

  • Ichiji Tasaki
  • Mark Hallett

Abstract

The process of action potential production is analyzed in relation to the problem of energy transduction in the nerve. Describing the conditions required for the maintenance of excitability, the indispensability of divalent cations and the dispensability of univalent cations in the external medium are emphasized. Univalent cations with a strong tendency toward hydration enhance the action potential amplitude when added to the external Ca-salt solution. Experimental facts are described in consonance with the macromolecular interpretation of nerve excitation which postulates a transition of the negatively charged membrane macromolecules from a hydrophobic (resting) state to a hydrophilic (excited) state. Thermodynamic implications are discussed in relation to changes in enthalpy and volume accompanied by action potential production. Difficulties associated with analyses of excitation processes on a molecular basis are stressed.

Keywords

External Medium Action Potential Amplitude Axon Membrane Univalent Cation Squid Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. L. Hodgkin and B. Katz, J. Physiol., 108 (1949) 37.PubMedGoogle Scholar
  2. 2.
    E. Overton, Pflügers Arch. f. ges. Physiol., 92 (1902) 346.CrossRefGoogle Scholar
  3. 3.
    R. Lorente de No, F. Vidal and L. M. H. Larramendi, Nature, 179 (1957) 737.Google Scholar
  4. 4.
    B. Hille, Proc. Nat. Acad. Sci., 68 (1971) 280.PubMedCrossRefGoogle Scholar
  5. 5.
    I. Tasaki, I. Singer and A. Watanabe, Amer. J. Physiol., 211 (1966) 746.PubMedGoogle Scholar
  6. 6.
    I. Tasaki, Nerve Excitation, A Macromolecular Approach, Charles C. Thomas, Springfield, Illinois, 1968.Google Scholar
  7. 7.
    I. Tasaki, A. Watanabe and L. Lerman, Amer. J. Physiol. 213 (1967) 1465.PubMedGoogle Scholar
  8. 8.
    A. Watanabe, I. Tasaki and L. Lerman, Proc. Nat. Acad. Sci., 58 (1967) 2246.PubMedCrossRefGoogle Scholar
  9. 9.
    I. Tasaki, L. Lerman and A. Watanabe, Amer. J. Physiol., 216 (1969) 130.PubMedGoogle Scholar
  10. 10.
    I. Tasaki, I. Singer and T. Takenaka, J. Gen. Physiol., 48 (1965) 1095.PubMedCrossRefGoogle Scholar
  11. 11.
    K. S. Cole and H. J. Curtis, J. Gen. Physiol., 22 (1939) 649.PubMedCrossRefGoogle Scholar
  12. 12.
    R. D. Keynes, J. Physiol., 114 (1951) 119.PubMedGoogle Scholar
  13. 13.
    A. L. Hodgkin and R. D. Keynes, J. Physiol., 119 (1953) 513.PubMedGoogle Scholar
  14. 14.
    O. Kedem and A. Essig, J. Gen. Physiol., 48 (1965) 1047.PubMedCrossRefGoogle Scholar
  15. 15.
    I. Tasaki, I. Singer, and A. Watanabe, J. Gen. Physiol., 50 (1967) 988.CrossRefGoogle Scholar
  16. 16.
    A. L. Hodgkin and R. D. Keynes, J. Physiol., 138 (1957) 253.PubMedGoogle Scholar
  17. 17.
    T. Teorell, Progr. Biophys., 3 (1953) 305.Google Scholar
  18. 18.
    K. Sollner, J. Macromol. Sci. Chem., A3 (1969) 1.Google Scholar
  19. 19.
    J. A. Kitchner, in: Modern Aspects of Electrochemistry, J. O. Brockris (ed.), Vol. II, Academic Press, New York, 1959, p. 87.Google Scholar
  20. 20.
    L. Mullins, J. Gen. Physiol., 43 (1960) 105.PubMedCrossRefGoogle Scholar
  21. 21.
    P. F. Baker, Sci. Amer., 214 (1966) 74.PubMedCrossRefGoogle Scholar
  22. 22.
    A. L. Hodgkin and A. F. Huxley, J. Physiol., 117 (1952) 500.PubMedGoogle Scholar
  23. 23.
    F. Helfferich, Ion Exchange, McGraw-Hill, New York, 1962.Google Scholar
  24. 24.
    A. Ikegami and N. Imai, J. Polymer Sci., 56 (1962) 133.CrossRefGoogle Scholar
  25. 25.
    O. Smidsrod and A. Haug, J. Polymer Sci. C. 16 (1967) 1587.Google Scholar
  26. 26.
    E. Matijevic, J. Leja and R. Nemeth, J. Colloid and Interface Sci., 22 (1966) 419.CrossRefGoogle Scholar
  27. 27.
    R. M. Barrer and J. D. Falconer, Proc. Roy. Soc. A, 236 (1956) 227.CrossRefGoogle Scholar
  28. 28.
    D. H. Olson and H. S. Sherry, J. Phys. Chem., 72, (1968) 4095.CrossRefGoogle Scholar
  29. 29.
    I. Tasaki, A. Watanabe and M. Hallett, Proc. Nat. Acad. Sci., 68 (1971) 938.PubMedCrossRefGoogle Scholar
  30. 30.
    I. Tasaki, T. Takenaka and S. Yamagishi, Amer. J. Physiol., 215 (1968) 152.PubMedGoogle Scholar
  31. 31.
    W. J. V. Osterhout and S. E. Hill, J. Gen. Physiol., 22 (1938) 139.PubMedCrossRefGoogle Scholar
  32. 32.
    F. T. Wall and J. W. Drenan, J. Polymer Sci., 7 (1951) 83.CrossRefGoogle Scholar
  33. 33.
    N. T. Coleman, Soil Sci., 74 (1952) 115.CrossRefGoogle Scholar
  34. 34.
    R. M. Barrer, L. V. C. Rees and D. J. Ward, Proc. Roy. Soc. A, 273 (1963) 180.CrossRefGoogle Scholar
  35. 35.
    H. S. Sherry and H. F. Walton, J. Phys. Chem., 71 (1967) 1457.CrossRefGoogle Scholar
  36. 36.
    B. C. Abbott, A. V. Hill and J. V. Howarth, Proc. Roy. Soc. B, 148 (1958) 149.CrossRefGoogle Scholar
  37. 37.
    J. V. Howarth, R. D. Keynes and J. M. Richie, J. Physiol., 194 (1968) 745.PubMedGoogle Scholar
  38. 38.
    J. W. Moore, T. Narahashi and T. I. Shaw, J. Physiol., 188 (1967) 99.PubMedGoogle Scholar
  39. 39.
    C. S. Spyropoulos, Amer. J. Physiol., 200 (1961) 2064.Google Scholar
  40. 40.
    F. Oosawa, Polyelectrolytes, Marcel Dekker, Inc., New York, 1971.Google Scholar
  41. 41.
    C. S. Spyropoulos, J. Gen. Physiol., 40 (1957) 849.PubMedCrossRefGoogle Scholar
  42. 42.
    C. S. Spyropoulos and E. M. Ezzy, Amer. J. Physiol., 197 (1959) 808.Google Scholar
  43. 43.
    F. Conti and G. Palmieri, Biophysik, 5 (1968) 71.PubMedCrossRefGoogle Scholar
  44. 44.
    E. A. Guggenheim, Thermodynamics, 3rd Ed., Interscience, New York, 1957.Google Scholar
  45. 45.
    A. Essig, Biophys. J., 8 (1968) 53.PubMedCrossRefGoogle Scholar
  46. 46.
    P. F. Baker, M. P. Blaustein, A. L. Hodgkin and R. A. Steinhardt, J. Physiol., 200 (1969) 431.PubMedGoogle Scholar
  47. 47.
    P. C. Caldwell, J. Physiol., 152 (1960) 545.PubMedGoogle Scholar
  48. 48.
    F. J. Brinley and L. J. Mullins, J. Gen. Physiol., 52 (1968) 181.PubMedCrossRefGoogle Scholar
  49. 49.
    S. I. Rapoport, Biophys. J., 11 (1971) 631.PubMedCrossRefGoogle Scholar
  50. 50.
    M. P. Blaustein and A. L. Hodgkin, J. Physiol., 200 (1969) 497.PubMedGoogle Scholar
  51. 51.
    C. M. Connelly, Biol. Bull., 103 (1952) 315.Google Scholar
  52. 52.
    M. G. Doane, J. Gen. Physiol., 50 (1967) 2603.Google Scholar
  53. 53.
    P. F. Baker, J. Physiol., 180 (1965) 383.PubMedGoogle Scholar
  54. 54.
    J. M. Richie, J. Physiol., 188 (1967) 309.Google Scholar
  55. 55.
    M. G. Larrabee, Progr. in Brain Res., 31 (1969) 95.CrossRefGoogle Scholar
  56. 56.
    E. Giacobini, Protoplasma, 63 (1967) 52.PubMedCrossRefGoogle Scholar
  57. 57.
    L. A. Cuervo and W. J. Adelman, J. Gen. Physiol., 55 (1970) 309.PubMedCrossRefGoogle Scholar
  58. 58.
    H. N. Fishman, Biophys. J., 10 (1970) 799.PubMedCrossRefGoogle Scholar
  59. 59.
    L. B. Cohen and R. D. Keynes, J. Physiol., 212 (1971) 259.PubMedGoogle Scholar
  60. 60.
    L. B. Cohen, B. Hille and R. D. Keynes, J. Physiol., 211 (1970) 495.PubMedGoogle Scholar
  61. 61.
    P. Mueller and D. O. Rudin, J. Theor. Biol., 18 (1968) 222.PubMedCrossRefGoogle Scholar
  62. 62.
    G. Ehrenstein, H. Lecar and R. Nossal, J. Gen. Physiol., 55 (1970) 119.PubMedCrossRefGoogle Scholar
  63. 63.
    D. E. Goldman, Biophys. J., 4 (1964) 167.CrossRefGoogle Scholar
  64. 64.
    L. Bass and W. J. Moore, in: Structural Chemistry and Molecular Biology, A. Rich and N. Davidson (eds.), W. H. Freeman and Co., San Francisco, 1968, p. 356.Google Scholar
  65. 65.
    G. Adam, Z. Naturforsch., 23b (1968) 181.Google Scholar
  66. 66.
    J. H. Wang, Proc. Nat. Acad. Sci., 67 (1970) 916.PubMedCrossRefGoogle Scholar
  67. 67.
    L. Y. Wei, Math. Biophys., 33 (1971) 187.CrossRefGoogle Scholar
  68. 68.
    T. L. Hill and Y.-D. Chen, Proc. Nat. Acad. Sci., 68 (1971) 1711.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Company Limited 1972

Authors and Affiliations

  • Ichiji Tasaki
    • 1
  • Mark Hallett
    • 1
  1. 1.Laboratory of NeurobiologyNational Institute of Mental HealthBethesdaUSA

Personalised recommendations