Skip to main content
  • 101 Accesses

Abstract

Fundamental questions dealing with the site of synthesis of membrane proteins and phospholipids, their integration into functional enzyme complexes and ultimately into membranes, remain largely unanswered at present. On the other hand, considerable progress has been made in elucidating the structure and organization of membranes and this new information has provided a conceptual framework for postulating possible mechanisms of membrane assembly. In this communication a model of membrane biogenesis is described which is based on studies of the structure and biosynthesis of constitutive enzymes of the mitochondrial inner membrane. Although the proposed mechanism will be discussed in terms of the biogenesis of this particular membrane, it could apply equally well to other biological membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. H. MacLennan, in: Current topics in membranes and transport, F. Bronner and A. Kleinzseller (eds.), Academic Press, New York, 1970, p. 177.

    Google Scholar 

  2. Y. Hatefi, in: The Enzymes, P. D. Boyer, H. Lardy and K. Myrbäck (eds.), Academic Press, New York, 1963, Volume 7, p. 495.

    Google Scholar 

  3. D. E. Green and A. Tzagoloff, Arch. Biochem. Biophys. 116 (1966) 293.

    Article  PubMed  CAS  Google Scholar 

  4. D. E. Green, D. W. Allmann, E. Bachmann, H. Baum, K. Kopaczyk, E. F. Korman, S. Lipton, D. H. MacLennan, D. G. McConnell, J. F. Perdue, J. S. Rieske and A. Tzagoloff; Arch. Biochem. Biophys., 119 (1967) 312.

    Article  PubMed  CAS  Google Scholar 

  5. Y. Kagawa and E. Racker, J. Biol. Chem., 241 (1966) 2475.

    PubMed  CAS  Google Scholar 

  6. W. L. Chen and F. C. Charalampous, J. Biol. Chem., 244 (1969) 2767.

    PubMed  CAS  Google Scholar 

  7. G. D. Birkmayer, Eur. J. Biochem., 21 (1971) 258.

    Article  Google Scholar 

  8. H. Weiss, W. Sebald and T. Bücher, Eur. J. Biochem., 22 (1971) 19.

    Article  PubMed  CAS  Google Scholar 

  9. H. R. Mahler, in: Probes of Structure and Function of Macromolecules and Membranes, Volume I, Academic Press, New York, 1971, p. 411.

    Google Scholar 

  10. G. Schatz, J. Biol. Chem., 243 (1968) 2192.

    Google Scholar 

  11. A. Tzagoloff, J. Biol. Chem., 246 (1971) 3050.

    PubMed  CAS  Google Scholar 

  12. A. Tzagoloff and P. Meagher, J. Biol. Chem., 246 (1971) 7328.

    PubMed  CAS  Google Scholar 

  13. A. Tzagoloff and P. Meagher, J. Biol. Chem., 247 (1972) 594.

    PubMed  CAS  Google Scholar 

  14. A. Tzagoloff, J. Biol. Chem., 245 (1970) 1545.

    Google Scholar 

  15. A. Tzagoloff, J. Biol. Chem., 244 (1969) 5027.

    PubMed  CAS  Google Scholar 

  16. D. E. Green, Proc. N.Y. Acad. Sciences, in press.

    Google Scholar 

  17. C. D. Joel, M. L. Karnovsky, E. G. Ball and O. Cooper, J. Biol. Chem., 233 (1958) 1565.

    Google Scholar 

  18. M. Sierra and A. Tzagoloff, unpublished observations.

    Google Scholar 

  19. K. J. Cattell, C. R. Lindop, I. G. Knight and R. B. Beechey, Biochem. J., 125 (1971) 66 P.

    Google Scholar 

  20. D. H. MacLennan, private communication.

    Google Scholar 

  21. P. Stoffyn and J. Folch-Pi, Biochem. Biophys. Res. Commun., 44 (1971) 157.

    Article  CAS  Google Scholar 

  22. B. Kadenbach, Biochem. Biophys. Res. Commun., 44 (1971) 724. A. W. Linnane, in: Oxidases and related redox systems, T. E. King, H. S. Mason and M.

    Google Scholar 

  23. Morrison, (eds.), John Wiley, New York, 1965, p. 1102.

    Google Scholar 

  24. P. P. Slonimski, in: La formation des enzymes respiratoires chez la levure, Masson, Paris, 1953.

    Google Scholar 

  25. L. Kovâc and K. Weissovâ, Biochim. Biophys. Acta, 153 (1968) 55.

    Article  Google Scholar 

  26. S. Yang and R. S. Criddle, Biochem., 9 (1970) 3063.

    Article  CAS  Google Scholar 

  27. P. O. Weislogel and R. A. Butow, J. Biol. Chem. 246 (1971) 5113.

    PubMed  CAS  Google Scholar 

  28. D. Y. Thomas and D. H. Williamson, Nature, 233 (1971) 196.

    Article  PubMed  CAS  Google Scholar 

  29. M. Ashwell and T. S. Work, Ann. Rev. Biochem., 39 (1970) 251.

    Article  PubMed  CAS  Google Scholar 

  30. Y. Kagawa and E. Racker, J. Biol. Chem. 241 (1966) 2467.

    Google Scholar 

  31. T. E. King and S. Takemori, J. Biol. Chem., 239 (1964) 3559.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Publishing Company Limited

About this chapter

Cite this chapter

Tzagoloff, A. (1972). A Model of Membrane Biogenesis. In: Avery, J. (eds) Membrane Structure and Mechanisms of Biological Energy Transduction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2016-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2016-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2018-0

  • Online ISBN: 978-1-4684-2016-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics