Advertisement

The Influence of Temperature-Induced Phase Changes on the Kinetics of Respiratory and Other Membrane-Associated Enzyme Systems

  • John K. Raison

Abstract

Temperature-mediated changes in the kinetics of enzyme catalysed reactions can be due to effects on a number of different parameters. If the change in temperature does not (a) inactivate the enzyme, (b) alter the affinity of the enzyme for the substrate, an activator or an inhibitor or (c) alter the pH function of the reaction components, the velocity of enzyme catalysed reactions increases with increasing temperature. The relationship between the velocity of reaction and temperature can be expressed either as the activation energy (E) or the temperature coefficient (Q10). Both expressions can be derived from the empirical Arrhenius equation relating the velocity of reaction and temperature
$$\frac{\alpha \ln k}{\alpha T}=\frac{E}{R{{T}^{2}}}$$
(1)
where k is the reaction velocity constant, R the gas constant, T the absolute temperature and E a constant, subsequently called the activation energy (also written as A or μ.). Integration of equation (1) gives
$$\ln \frac{{{k}_{2}}}{{{k}_{1}}}=\frac{E}{R}\left( \frac{1}{{{T}_{1}}}-\frac{1}{{{T}_{2}}} \right)$$
(2)
from which it can be seen that the value for E can be obtained from the slope of the straight line when logk is plotted against 1/T
$$E=2\cdot 303R\times slope$$
$$\therefore E=4\cdot 576\times slope \left( where R=1\cdot 987 cal/mole/{}^{\circ }K \right)$$

Keywords

Activation Energy Arrhenius Plot Succinate Oxidation Poikilothermic Animal Hibernate Ground Squirrel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. H. Johnson, H. Eyring and M. J. Polissar, The Kinetic Basis of Molecular Biology, John Wiley and Sons, Inc., New York, 1954, p. 187.Google Scholar
  2. 2.
    E. A. Dawes, Quantitative Problems in Biochemistry, E. and S. Livingstone, Ltd., Edinburgh, 1956.Google Scholar
  3. 3.
    H. G. Bray and K. White, Kinetics and Thermodynamics in Biochemistry, Academic Press, New York, 1957.Google Scholar
  4. 4.
    I. W. Sizer, Adv. in Enzymol., 3 (1943) 35.Google Scholar
  5. 5.
    M. Dixon and E. C. Webb, Enzymes, Longmans, Green and Co., London, 1958, p. 150.Google Scholar
  6. 6.
    J. M. Lyons and J. K. Raison, Plant Physiol., 45 (1970) 386.PubMedCrossRefGoogle Scholar
  7. 7.
    J. K. Raison, J. M. Lyons and W. W. Thomson, Arch. Biochem. Biophys., 142 (1970) 83.CrossRefGoogle Scholar
  8. 8.
    W. Drost-Hansen, in: Chemistry of the Cell Interface,Part B, H. D. Brown (ed.), Academic Press Inc., New York, 1972.Google Scholar
  9. 9.
    S. Arrhenius, Quantitative Laws in Biological Chemistry, G. Bell & Sons Ltd., London, 1915.CrossRefGoogle Scholar
  10. 10.
    J. Bélehrâdek, Temperature and Living Matter Protoplasm Monographien, Vol. 8, Gebrüder Borntraeger, Berlin, 1935, p. 50.Google Scholar
  11. 11.
    V. Massey, Biochem. J.,53 (1953) 72.Google Scholar
  12. 12.
    J. Bélehrâdek, Ann. Rev. Physiol., 19 (1957) 59.Google Scholar
  13. 13.
    J. Kumamoto, J. K. Raison and J. M. Lyons, J. Theoret. Biol., 31 (1971) 47.CrossRefGoogle Scholar
  14. 14.
    J. M. Lyons and J. K. Raison, Comp. Biochem. Physiol., 37 (1970) 405.CrossRefGoogle Scholar
  15. 15.
    I. W. Sizer and E. S. Josephson, Food Res.,7 (1942) 201.Google Scholar
  16. 16.
    A. K. Balls and H. Lineweaver, Food Res.,3 (1938) 57.Google Scholar
  17. 17.
    V. Massey, Biochem. J.,55 (1953) 172.Google Scholar
  18. 18.
    A. Kemp, G. S. P. Groot and H. J. Reitsma, Biochim. Biophys. Acta, 180 (1969) 28.PubMedCrossRefGoogle Scholar
  19. 19.
    W. P. Zeylemaker, H. Jansen, C. Veeger and E. C. Slater, Biochim. Biophys. Acta, 242 (1971) 14.PubMedGoogle Scholar
  20. 20.
    J. K. Raison and J. M. Lyons, Proc. Natn. Acad. Sci. USA, 68 (1971) 2092.CrossRefGoogle Scholar
  21. 21.
    V. Luzzati and F. Husson, J. Cell Biol.,12 (1962) 207.PubMedCrossRefGoogle Scholar
  22. 22.
    D. Chapman, P. Byrne and G. G. Shipley, Proc. Roy. Soc. (London) A, 290 (1966) 115.CrossRefGoogle Scholar
  23. 23.
    J. M. Stein, M. E. Tourtellotte, J. C. Reinert, R. N. McElhaney and R. L. Rader, Proc. Natn. Acad. Sci. USA, 63 (1969) 104.CrossRefGoogle Scholar
  24. 24.
    J. M. Lyons, T. A. Wheaton and H. K. Pratt, Plant Physiol.,39 (1964) 262.PubMedCrossRefGoogle Scholar
  25. 25.
    J. M. Lyons and C. M. Asmundson, J. Am. Oil Chemist’s Soc., 42 (1965) 1056.CrossRefGoogle Scholar
  26. 26.
    T. Richardson and A. L. Tappel, J. Cell Biol.,13 (1962) 43.PubMedCrossRefGoogle Scholar
  27. 27.
    T. Richardson, A. L. Tappel and E. H. Grager, Arch. Biochem. Biophys., 94 (1961) I.Google Scholar
  28. 28.
    J. K. Raison, J. M. Lyons, R. J. Mehlhorn and A. D. Keith, J. Biol. Chem.,246 (1971) 4036.PubMedGoogle Scholar
  29. 29.
    E. J. McMurchie, J. K. Raison and K. D. Cairncross, Comp. Biochem. Physiol. (1972), in preparation.Google Scholar
  30. 30.
    L. M. G. van Golde and L. L. M. van Deenen, Biochim. Biophys. Acta, 125 (1966) 496.PubMedGoogle Scholar
  31. 31.
    Y. Kagawa and E. Racker, J. Biol. Chem.,241 (1966) 2467.PubMedGoogle Scholar
  32. 32.
    R. Berezney, Y. C. Awasthi and F. L. Crane, Bioenergetics,1 (1970) 457.CrossRefGoogle Scholar
  33. 33.
    E. Pfaff, H. W. Heldt and M. Klingenberg, Europ. J. Biochem., 10 (1969) 484.PubMedCrossRefGoogle Scholar
  34. 34.
    H. M. Levy, N. Sharon, E. M. Ryan and D. E. Koshland, Biochim. Biophys. Acta, 56 (1962) 118.PubMedCrossRefGoogle Scholar
  35. 35.
    H. W. Heldt, in: Regulation of Metabolic Processes in Mitochondria,B.B.A. Lib., Vol. 7, J. M. Tager, S. Papa, E. Quagliariello and E. C. Slater (eds.), Elsevier, Amsterdam, 1966, p. 51.Google Scholar
  36. 36.
    N. Gruener and Y. Avi-Dor, Biochem. J., 100 (1966) 762.PubMedGoogle Scholar
  37. 37.
    K. Bowler and C. J. Duncan, Comp. Biochem. Physiol., 24 (1968) 1043.PubMedCrossRefGoogle Scholar
  38. 38.
    J. S. Charnock, D. A. Cook and R. Casey, Arch. Biochem. Biophys. (1972), in press.Google Scholar
  39. 39.
    A. Atkinson, A. D. Gatenby and A. G. Lowe, Nature New Biol., 233 (1971) 195.CrossRefGoogle Scholar
  40. 40.
    J. S. Charnock and D. Frankel, Abstr. 2nd Intern. Congr. Muscle Diseases, Perth, 1971, Ab. 45.Google Scholar
  41. 41.
    G. Inesi and S. Watanabe, Arch. Biochem. Biophys., 121 (1967) 665.PubMedCrossRefGoogle Scholar
  42. 42.
    T. Yamamoto and Y. Tonomura, J. Biochem. (Tokyo), 62 (1967) 558.Google Scholar
  43. 43.
    W. Hesselbach and M. Makinose, Biochem. Z.,339 (1963) 94.Google Scholar
  44. 44.
    I. P. Suzdalskaya, in: The Cell and Environmental Temperature,Vol. 34, A. S. Troshin (ed.), Inter. Series of Monographs in Pure and Applied Biology, Pergamon Press, Oxford, 1963.Google Scholar
  45. 45.
    C. P. Lyman, J. Mammal., 45 (1963) 122.CrossRefGoogle Scholar
  46. 46.
    G. E. Palade and P. Siekevitz, J. Biophys. Biochem. Cytol., 2 (1956) 671.PubMedCrossRefGoogle Scholar
  47. 47.
    N. Towers, J. K. Raison, G. Kellerman and A. W. Linnane, unpublished data.Google Scholar
  48. 48.
    I. Faiferman, L. Cornudella, and A. O. Pogo, Nature New Biol., 233 (1971) 234.PubMedGoogle Scholar
  49. 49.
    T. M. Chen, R. H. Brown and C. C. Black, Weed Sci., 18 (1970) 399.Google Scholar
  50. 50.
    A. Shneyour, J. K. Raison and R. M. Smillie, Biochim. Biophys. Acta (1972) in preparation.Google Scholar
  51. 51.
    T. E. Weier and A. A. Benson in Biochemistry of Chloroplasts, T. W. Goodwin (ed.), Academic Press, London, 1966, p. 91.Google Scholar
  52. 52.
    T. Murata, Physiol. Plantarum., 22 (1969) 401.Google Scholar
  53. 53.
    A. O. Taylor and J. A. Rowley, Plant Physiol.,47 (1971) 713.PubMedCrossRefGoogle Scholar
  54. 54.
    A. O. Taylor and A. S. Craig, Plant Physiol.,47 (1971) 719.PubMedCrossRefGoogle Scholar
  55. 55.
    C. R. Hackenbrock, J. Cell. Biol.,30 (1966) 269.PubMedCrossRefGoogle Scholar
  56. 56.
    D. E. Green, J. Asai, R. A. Harris and J. T. Penniston, Arch. Biochem. Biophys., 125 (1968) 684.PubMedCrossRefGoogle Scholar
  57. 57.
    R. W. Hendler, Nature (London),207 (1965) 1053.Google Scholar
  58. 58.
    J. Cullen, M. C. Phillips and G. G. Shipley, Biochem..1.,125 (1971) 733.Google Scholar
  59. 59.
    G. Wilson, S. P. Rose and C. F. Fox, Biochem. Biophys. Res. Commun.,38 (1970) 617.PubMedCrossRefGoogle Scholar
  60. 60.
    B. L. Adams, V. McMahon and J. Seckbach, Biochem. Biophys. Res. Commun.,42 (1971) 359.PubMedCrossRefGoogle Scholar
  61. 61.
    P. Cerletti, S. Giovenco, G. Testolin and I. Binotti, Membrane Model Form. Biol. Membranes, Proc. Meeting Intern. Conf. Biol. Membranes, 1967, L. Bolis (ed.), North Holland Publishing. Co., Amsterdam, 1968, p. 166.Google Scholar
  62. 62.
    M. R. Lemberg, Phys. Reviews,49 (1969) 48.Google Scholar
  63. 63.
    J. C. Reinert and J. M. Steim, Science,168 (1970) 1580.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Company Limited 1972

Authors and Affiliations

  • John K. Raison
    • 1
    • 2
  1. 1.Plant Physiology UnitC.S.I.R.O. Division of Food ResearchNorth RydeAustralia
  2. 2.School of Biological SciencesMacquarie UniversityNorth RydeAustralia

Personalised recommendations