Advertisement

Solution of the Problem of Energy Coupling in Terms of Chemiosmotic Theory

  • V. P. Skulachev

Summary

The present state of the chemiosmotic hypothesis of oxidative phosphorylation is considered. It is pointed out that the available data testify to the validity of the following postulates of this hypothesis:
  1. (1)

    Energization of coupling membranes results in formation of a transmembrane electric potential and/or a pH difference whose values prove to be of the same order of magnitude as standard free energy of ATP hydrolysis.

     
  2. (2)

    The redox chain can generate a membrane potential independently of whether or not high-energy intermediates are formed.

     
  3. (3)

    ATPase can generate a membrane potential independently of whether or not mechanisms of electron transfer via coupling sites are operative.

     
  4. (4)

    Energy accumulated in the form of transmembrane electric and osmotic gradients can be utilized for ATP synthesis (“ion transfer phosphorylation”).

     

The observations summarized in these items are sufficient to conclude that electron transfer and phosphorylation can be coupled by a membrane potential, as was postulated by the chemiosmotic theory.

It is noted that a number of consequences of Mitchell’s principle of energy coupling are also experimentally proved. It was shown, in particular, that
  1. (a)

    an increase in electric conductance and ion permeability, initially very low for coupling membranes, results in uncoupling of oxidative phosphorylation;

     
  2. (b)

    electron (hydrogen) transfer in some segment (s) of the respiratory chain is directed across the membrane;

     
  3. (c)

    energy-linked transhydrogenase represents reverse electron transfer via the additional (fourth) site of the redox chain energy coupling, etc.

     

Thus, chemiosmotic theory of oxidative phosphorylation seems to be acceptable as working hypothesis for the further study of the mechanism of oxidative phosphorylation.

Keywords

Membrane Potential Energy Coupling Proton Motive Force Reverse Electron Transfer Coupling Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Belitser and E. T. Tsibakova, Biokhimiya USSR, 4 (1939) 516.Google Scholar
  2. 2.
    P. Mitchell, Nature, 191 (1961) 144.PubMedCrossRefGoogle Scholar
  3. 3.
    P. Mitchell, Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Res. Ltd., Bodmin, 1966.Google Scholar
  4. 4.
    L. L. Grinius, A. A. Jasaitis, Yu. P. Kadziaskas, E. A. Liberman, V. P. Skulachev, V. P. Topali, L. M. Tsofina and M. A. Vladimirova, Biochim. Biophys. Acta, 216 (1970) 1.PubMedCrossRefGoogle Scholar
  5. 5.
    L. E. Bakeeva, L. L. Grinius, A. A. Jasaitis, V. V. Kuliene, D. O. Levitsky, E. A. Liberman, I. I. Severina and V. P. Skulachev, Biochim. Biophys. Acta, 216 (1970) 13.PubMedCrossRefGoogle Scholar
  6. 6.
    V. P. Skulachev, FEBS Letters, 11 (1970) 301.PubMedCrossRefGoogle Scholar
  7. 7.
    S. Papa, F. Guerrieri, M. Lorusso and E. Quagliariello, FEBS Letters, 10 (1970) 295.PubMedCrossRefGoogle Scholar
  8. 8.
    M. Montai, B. Chance and C.-P. Lee, J. Membrane Biol., 2 (1970) 201.CrossRefGoogle Scholar
  9. 9.
    A. Azzi, Biochem. Biophys. Res. Commun., 37 (1969) 254.PubMedCrossRefGoogle Scholar
  10. 10.
    A. Azzi, P. Cherardini and M. Santato, J. Biol. Chem., 246 (1971) 2035.Google Scholar
  11. 11.
    A. Azzi, A. Tamburro, E. Gobbi and M. Santato, 7th FEBS Meeting Abstracts, Varna, 1971, p. 51.Google Scholar
  12. 12.
    J. R. Brocklehurst, R. B. Freedman, D. J. Hancock, and G. K. Radda, Biochem. J., 116 (1970) 721.PubMedGoogle Scholar
  13. 13.
    P. I. Isaev, E. A. Liberman, V. D. Samuilov, V. P. Skulachev and L. M. Tsofina, Biochim. Biophys. Acta, 216 (1970) 22.PubMedCrossRefGoogle Scholar
  14. 14.
    V. P. Skulachev, Energy Transformations in Biomembranes, Nauka Press, 1972.Google Scholar
  15. 15.
    A. T. Jagendorf and E. Uribe, Proc. Natl. Acad. Sci. U.S., 55 (1966) 170.CrossRefGoogle Scholar
  16. 16.
    R. S. Cockrell, E. J. Harris and B. C. Pressman, Nature, 215 (1967) 1487.PubMedCrossRefGoogle Scholar
  17. 17.
    P. J. Garrahan and I. M. Glynn, Nature, 211 (1966) 1414.PubMedCrossRefGoogle Scholar
  18. 18.
    M. Makinose, FEBS Letters, 5 (1971) 269.CrossRefGoogle Scholar
  19. 19.
    A. A. Jasaitis, V. V. Kuliene and V. P. Skulachev, Biochim. Biophys. Acta, 234 (1971) 177.PubMedCrossRefGoogle Scholar
  20. 20.
    J. B. Jackson and A. R. Crofts, FEBS Letters, 4 (1969) 185.PubMedCrossRefGoogle Scholar
  21. 21.
    J. Patrick, B. Valeur, L. Monnerie and J.-P. Changeux, J. Membrane Biol., 5 (1971) 102.CrossRefGoogle Scholar
  22. 22.
    H. Haaker, I. A. Berden and K. Van Dam, Biochim. Biophys. Acta, in press.Google Scholar
  23. 23.
    E. A. Liberman, V. P. Topali, L. M. Tsofina, A. A. Jasaitis and V. P. Skulachev, Nature, 222 (1969) 1076.PubMedCrossRefGoogle Scholar
  24. 24.
    V. P. Skulachev, Current Topics in Bioenergetics, 4 (1971) 127.Google Scholar
  25. 25.
    H. P. Ting, D. F. Wilson and B. Chance, Arch. Biochem. Biophys., 141 (1970) 141.PubMedCrossRefGoogle Scholar
  26. 26.
    E. A. Liberman and V. P. Skulachev, Biochim. Biophys. Acta, 216 (1970) 30.PubMedCrossRefGoogle Scholar
  27. 27.
    W. Junge and H. T. Witt, Z. Naturforsch., 23 (1968) 244.Google Scholar
  28. 28.
    W. Schliephake, W. Junge and H. T. Witt, Z. Naturforsch., 23 (1968) 1571.Google Scholar
  29. 29.
    Ch. Wolff, H.-E. Buchwald, H. Rappel, K. Witt and H. T. Witt, Z. Naturforsch., 24 (1969) 1041.Google Scholar
  30. 30.
    H. M. Emrich, W. Junge and H. T. Witt, Z. Naturforsch., 24 (1969) 1144.Google Scholar
  31. 31.
    W. Junge, B. Rumberg and H. Schröder, Eur. J. Biochem., 14 (1970) 575.PubMedCrossRefGoogle Scholar
  32. 32.
    G. D. Greville, Current Topics in Bioenergetics, 3 (1969) 1.Google Scholar
  33. 33.
    L. L. Grinius, M. A. Il’ina, V. P. Skulachev and G. V. Tikhonova, Biochim. Biophys. Acta (submitted).Google Scholar
  34. 33a.
    E. A. Liberman and L. M. Tsofina, Biofisika USSR, 14 (1969) 1017.Google Scholar
  35. 34.
    L. L. Grinius and V. P. Skulachev, Biokhimiya USSR, 36 (1971) 430.Google Scholar
  36. 35.
    A. E. Dontsov, L. L. Grinius, A. A. Jasaitis, I. I. Severina and V. P. Skulachev, J. Bioenergetics (in press).Google Scholar
  37. 36.
    R. J. Van de Stadt, F. J. R. M. Nienwenhuis, K. Van Dam, Biochim. Biophys. Acta, 234 (1971) 173.PubMedCrossRefGoogle Scholar
  38. 37.
    J. B. Chappell and A. R. Crofts, Biochem. J., 95 (1965) 393.PubMedGoogle Scholar
  39. 38.
    P. Mitchell and J. Moyle, Nature, 208 (1965) 1205.PubMedCrossRefGoogle Scholar
  40. 39.
    V. P. Skulachev, in: Energy Transduction in Respiration and Photosynthesis, Bary, Adriatica Editrice, 1971, p. 99.Google Scholar
  41. 40.
    P. Hinkle and P. Mitchell, J. Bioenergetics, 1 (1970) 45.CrossRefGoogle Scholar
  42. 41.
    J. B. Jackson and A. R. Crofts, Eur. J. Biochem., 18 (1971) 120.PubMedCrossRefGoogle Scholar
  43. 42.
    A. A. Jasaitis, I. I. Severina, V. P. Skulachev and S. M. Smirnova, J. Bioenergetics (in press).Google Scholar
  44. 43.
    W. J. Arion and E. Racker, J. Biol. Chem., 245 (1970) 5186.PubMedGoogle Scholar
  45. 44.
    G. S. P. Groot, L. Koval and G. Schatz, Proc. Natl. Acad. Sci. U.S., 68 (1971) 308.CrossRefGoogle Scholar
  46. 45.
    E. C. Slater, Quarterly Reviews of Biophysics, 4 (1971) 35.PubMedCrossRefGoogle Scholar
  47. 46.
    M. Klingenberg, Essays in Biochem., 6 (1970) 119.Google Scholar
  48. 47.
    E. Rossi and G. F. Azzone, Europ. J. Biochem., 12 (1970) 319.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Company Limited 1972

Authors and Affiliations

  • V. P. Skulachev
    • 1
  1. 1.Department of Bioenergetics, Laboratory of Bioorganic ChemistryMoscow State UniversityMoscowUSSR

Personalised recommendations