Microwave Hall Mobility Measurements on Heavy Beef Heart Mitochondria

  • D. D. Eley
  • R. J. Mayer
  • R. Pethig


The observed initial microwave Hall mobility values at 1.21 tesla of heavy beef heart mitochondria is at least six times greater than that observed for bovine serum albumin at similar resistivity values. The respiratory inhibitor cyanide significantly reduces the initial Hall mobility values for HBHM and for a preparation of HBHM cytochrome oxidase.

The four enzymic complexes of the respiratory chain were partially or completely separated. Of these complexes cytochrome oxidase exhibits the largest microwave Hall mobility.

The maximum hydration content of loosely bound water for freeze-dried preparations of cytochrome oxidase is 5% by weight; 60% of this hydration content is driven off by microwave power. Since the effective ac resistivity of the samples of cytochrome oxidase did not appreciably vary with changes in hydration content, the true resistivity of cytochrome oxidase has a value of the order 5 × 103 ohm cm and possibly much lower.

The electron transport pathway (as measured by Hall signal) of cytochrome oxidase is irreversibly damaged by prolonged exposure to microwave irradiation at 9.2 GHz. This is accompanied by the complete loss of capacity to oxidise ferrocytochrome c. Such changes do not occur with HBHM or with the other respiratory complexes.

There appears to be a direct relationship between observed Hall signals and the capacity of cytochrome oxidase to oxidize ferrocytochrome c. There is a “background” signal which is not directly related to electron transport but which is dependent on the conformation of the cytochrome oxidase.

The observed electronic parameters of cytochrome oxidase do not depend appreciably on its redox state.

Acid denaturation of cytochrome oxidase drastically reduces the Hall signal, to include almost complete removal of the “background” signal. It also more than doubles ac resistivity.

An electron tunnelling model is outlined.


Conduction Band Cytochrome Oxidase Hall Mobility Respiratory Complex Transfer Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Chance and E. L. Spencer, Disc. Faraday Soc., 27 (1959) 200.CrossRefGoogle Scholar
  2. 2.
    M. Klingenberg, in: Biological Oxidations, by T. Singer (ed.), Wiley, New York, 1968, p. 19.Google Scholar
  3. 3.
    D. D. Eley and R. Pethig, J. Bioenergetics, 2 (1971) 39.CrossRefGoogle Scholar
  4. 4.
    E. M. Trukhan, Pribory tekhm. eskper, 4 (1965) 198.Google Scholar
  5. 5.
    D. D. Eley and R. Pethig, Disc. Faraday Soc., 51 (1971) 164.CrossRefGoogle Scholar
  6. 6.
    A. L. Smith, Methods in Enzymology, Vol. X, R. W. Estabrook, and M. E. Pullman (eds.), Academic Press, New York and London, 1967, p. 81.Google Scholar
  7. 7.
    Y. Hatefi and J. S. Rieske, Methods in Enzymology, Vol. X, R. W. Estabrook and M. E. Pullman (eds.), Academic Press, New York and London, 1967, p. 225.Google Scholar
  8. 8.
    D. Ziegler and J. S. Rieske, Methods in Enzymology, Vol. X, R. W. Estabrook and M. E. Pullman (eds.), Academic Press, New York and London 1967, p. 231.Google Scholar
  9. 9.
    D. E. Griffiths and D. C. Wharton, J. Biol. Chem., 236 (1961) 1850.Google Scholar
  10. 10.
    D. C. Wharton and A. Tzagoloff, Methods in Enzymology, Vol. X, R. W. Estabrook and M. E. Pullman (eds.), Academic Press, New York and London (1967) p. 245.Google Scholar
  11. 11.
    T. E. King, Methods in Enzymology, Vol. X, R. W. Estabrook and M. E. Pullman (eds.), Academic Press, New York and London, 1967, p. 216.Google Scholar
  12. 12.
    O. H. Lowry, N.J. Rosebrough, A. L. Farr and R. J. Randall, J. Biol. Chem., 193 (1951) 265.PubMedGoogle Scholar
  13. 13.
    D. Keilin and E. F. Hartree, Proc. Roy. Soc., London, B, 127 (1939) 167.Google Scholar
  14. 14.
    B. F. Van Gelder and A. O. Muijers, Biochim. Biophys. Acta, 81 (1964) 405.Google Scholar
  15. 15.
    D. D. Eley, R. J. Mayer and R. Pethig, J. Bioenergetics, 3 (1972) 271.CrossRefGoogle Scholar
  16. 16.
    A. O. Muijers, R. H. Tiesjema and B. F. Van Gelder, Biochem. Biophys. Acta, 234 (1971) 468.CrossRefGoogle Scholar
  17. 17.
    D. W. Urry and P. Daty, Amer. Chem. Soc., 87 (1965) 2756.Google Scholar
  18. 18.
    R. E. Dickerson, T. Takano, D. Eisenberg, O. B. Kallai, L. Samson, A. Cooper and E. Margoliash, J. Biol. Chem., 246 (1971) 1511.Google Scholar
  19. 19.
    D. D. Eley and D. I. Spivey, Trans. Faraday Soc., 56 (1960) 1432.Google Scholar
  20. 20.
    D. D. Eley and M. R. Willis, in: Symposium on Electrical Conductivity in Organic Solids, H. Kallman and M. Silver (eds.), Wiley (Interscience), New York, 1961, p. 257.Google Scholar
  21. 21.
    D. D. Eley, in: Organic Semiconducting Polymers, J. E. Katon (ed.), Arnold, London, Marcel Dekker, Inc., New York, 1968, p. 259.Google Scholar
  22. 22.
    M. G. Evans and J. Gergely, Biochim. Biophys. Acta, 3 (1949) 188.CrossRefGoogle Scholar
  23. 23.
    M. Suard, G. Berthier and B. Pullman, Biochim. Biophys. Acta, 52 (1961) 254.CrossRefGoogle Scholar
  24. 24.
    B. Rosenberg and E. Postow, Ann. N.Y. Acad. Sci., 158 (1969) 161.PubMedCrossRefGoogle Scholar
  25. 25.
    F. W. Cope and K. D. Straub, Bull. Math. Biophys., 31 (1969) 761.PubMedCrossRefGoogle Scholar
  26. 26.
    D. D. Eley and E. Metcalfe, Nature, in press.Google Scholar
  27. 27.
    H. R. Mahler and E. H. Cordes, Biological Chemistry, Harper and Row, New York, 1966, pp. 568, 600.Google Scholar
  28. 28.
    P. L. Dutton, D. F. Wilson and Chuan-Pu Lee, Biochemistry, 9 (1970) 5077.PubMedCrossRefGoogle Scholar
  29. 29.
    M. Erecinska, B. Chance and D. F. Wilson, FEBS Letters, 16 (1971) 284.PubMedCrossRefGoogle Scholar
  30. 30.
    F. Gutmann and L. E. Lyons, Organic Semiconductors, Wiley, New York, 1967, p. 704.Google Scholar
  31. 31.
    M. Klingenberg, in Biological Oxidations, T. P. Singer (ed.), Wiley ( Interscience ), New York, 1968, p. 16.Google Scholar
  32. 32.
    A. L. Lehninger, The Mitochondrion, W. A. Benjamin, New York, 1965, p. 30.Google Scholar
  33. 33.
    E. Racker, Essays in Biochemistry, 6 (1970) 1.PubMedGoogle Scholar
  34. 34.
    E. C. Slater, Quarterly Rev. of Biophysics, 4 (1971) 35.CrossRefGoogle Scholar
  35. 35.
    A. Gierer, Biochem. Biophys. Acta, 17 (1955) 111.CrossRefGoogle Scholar
  36. 36.
    D. D. Eley and R. Pethig, J. Bioenergetics, 2 (1971) 39.CrossRefGoogle Scholar
  37. 37.
    C. B. Duke, Tunnelling in Solids, Solid State Physics Supplement 10, Academic Press, New York, 1969, p. 115.Google Scholar
  38. 38.
    F. W. Cope, Bull. Math. Biophysics, 33 (1967) 642.Google Scholar
  39. 39.
    D. De Vault, J. H. Parkes and B. Chance, Nature, 215 (1967) 642.CrossRefGoogle Scholar
  40. 40.
    Q. H. Gibson, in: Biological Oxidations, T. P. Singer (ed.), Wiley (Interscience), New York, 1968, p. 403.Google Scholar
  41. 41.
    A. Terenin and I. Akimov, Zeit. Physikal Chem., 217 (1961) 307.Google Scholar
  42. A. V. Vannikov and L. I. Boguslayskii, Biofizika,14 (1969) 421.Google Scholar
  43. 43.
    E. F. Korman, A. D. F. Addink, T. Wakabayashi and D. E. Green, J. Bioenergetics, 1, (1970) 9.CrossRefGoogle Scholar
  44. 44.
    K. M. C. Davis, D. D. Eley and R. S. Snart, Nature, 188 (1960) 724.PubMedCrossRefGoogle Scholar
  45. 45.
    M. H. Cardew and D. D. Eley, Disc. Faraday Soc., 27 (1959) 115.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Company Limited 1972

Authors and Affiliations

  • D. D. Eley
    • 1
  • R. J. Mayer
    • 2
  • R. Pethig
    • 1
  1. 1.Department of ChemistryUniversity of NottinghamUK
  2. 2.Department of Biochemistry, The Medical SchoolUniversity of NottinghamUK

Personalised recommendations