Advertisement

A Physico-chemical Basis for Anion, Cation and Proton Distributions between Rat-liver Mitochondria and the Suspending Medium

  • E. J. Harris

Abstract

The distribution of ions, including protons, between the mitochondrial interior and the medium can be treated, most simply, as a physicochemical problem akin to that met with in cell suspensions, particularly when sufficient is known about the system. More is now known about mitochondrial properties, and the aim of the present review is to summarize the evidence, some new and much derived from earlier reports, that the distributions of permeant anions and of protons between the mitochondrial interior and the exterior provide an example of the Gibbs—Donnan law applied to a situation with an ionized internal buffer. This can only hold of course when the metabolic fluxes are low. Some anions behave as non-penetrants and so can take on any distribution ratio. The cations Ca2+ and K+ are subject to energy-linked inward transport.

Keywords

Tricalcium Phosphate Proton Distribution Anion Content Internal Buffer Permeant Anion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addanki, S., Cahill, F. D. and Sotos, J. F., J. biol. Chem., 243 (1968) 2337.Google Scholar
  2. Chappell, J. B. and Crofts, A. R., in: Regulation of Metabolic Processes in Mitochondria, J. M. Tager et al. (eds.), Elsevier, Amsterdam, 1966, p. 293.Google Scholar
  3. Chance, B. and Mela, L., J. biol. Chem., 241 (1966) 4588.PubMedGoogle Scholar
  4. Cockrell, R. C., Harris, E. J. and Pressman, B. C., Nature, Lond., 215 (1967) 1487.Google Scholar
  5. Ghosh, A. K. and Chance, B., Arch. Biochem. Biophys., 138 (1970) 483.PubMedCrossRefGoogle Scholar
  6. Harris, E.,J., in: Energy Level and Metabolic Control in Mitochondria, S. Papa et al. (eds.), Adriatica, Bari, 1969, p. 31.Google Scholar
  7. Harris, E. J., F.E.B.S. Letters, 11 (1970) 225.CrossRefGoogle Scholar
  8. Harris, E. J., Judah, J. D. and Ahmed, K., in: Current Topics in Bioenergetics, VoI. 1, D. Sanadi (ed.), Academic Press, New York, 1966, p. 255.Google Scholar
  9. Harris, E. J. and Bangham, J. A., J. Membrane Biol., (1972) in press.Google Scholar
  10. Harris, E. J., Bangham, J. A. and Zukovic, B. (1972) in preparation.Google Scholar
  11. Harris, E. J. and Berent, C., F.E.B.S. Letters, 10 (1970) 6.CrossRefGoogle Scholar
  12. Harris, E. J., Cockrell, R. C. and Pressman, B. C., Biochem. J. 215 (1967) 1487.Google Scholar
  13. Hoek, J. B., Lofrumento, L. E., Meijer, A. J. and Tager, J. M., Biochim. Biophys. Acta, 226 (1971) 297.PubMedCrossRefGoogle Scholar
  14. Kimmich, G. and Rasmussen, H., Fed. Proc., 27 (1968) 528.Google Scholar
  15. Lehninger, A. L., Biochem. J., 119 (1970) 129.PubMedGoogle Scholar
  16. Mela, L. and Chance, B., Biochemistry, 7 (1968) 4059.PubMedCrossRefGoogle Scholar
  17. Mitchell, P., Chemiosmotic Coupling and Energy Transduction, Glynn Research Ltd., Bodmin, Cornwall, 1968.Google Scholar
  18. Palmieri, F., Quagliariello, E. and Klingenberg, M., Euro. J. Biochem., 17 (1970) 230.CrossRefGoogle Scholar
  19. Rossi, C., Azzone, G. F. and Azzi, A., Euro. J. Biochem., 1 (1967) 141.CrossRefGoogle Scholar
  20. Rossi, E. and Azzone, G. F., Euro. J. Biochem., 12 (1970) 319.CrossRefGoogle Scholar
  21. Thomas, R. C., Manger, J. R. and Harris, E. J., Euro. J. Biochem., 11 (1969) 413.CrossRefGoogle Scholar
  22. Tupper, J. T. and Tedeschi, H., Science, Wash., 166 (1969) 1539.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Company Limited 1972

Authors and Affiliations

  • E. J. Harris
    • 1
  1. 1.Biophysics DepartmentUniversity CollegeLondon, W.C.1UK

Personalised recommendations