Advertisement

Mechanisms of Energy Conservation in the Mitochondrial Membrane

  • Lars Ernster
  • Kerstin Juntti
  • Kouichi Asami

Abstract

The importance of the inner mitochondrial membrane for respiratory chain-linked energy conservation is well recognized. The precise role of the membrane in the process, however, is not known. A problem of great current interest in this context concerns the mode of interaction of the mitochondrial electron-transport and ATPase systems in catalysing oxidative phosphorylation. According to the chemiosmotic hypothesis1 this interaction is indirect and involves as an obligatory intermediate a proton gradient across the membrane. In contrast, the chemical hypothesis of oxidative phosphorylation envisages the formation of high-energy intermediates as functional links between the two systems,2 possibly with the involvement of conformational changes of proteins3 and localized proton gradients.4 Since these intermediates most probably are of macromolecular nature, with only limited mobility within the membrane, such a mechanism would be likely to involve a direct interaction between the electron-transport and ATPase systems. Thus, whereas the chemiosmotic hypothesis considers the two systems as separate units, where each ATPase ought to be able to interact with any electron-transport chain within the same membrane (Fig. 1A), the chemical hypothesis is compatible with an assembly-like arrangement of the two systems, where any given ATPase may interact with only one electron-transport chain (Fig. 1B).

Keywords

ATPase Activity ATPase Inhibitor Submitochondrial Particle Great Current Interest Nicotinamide Nucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

The following non-conventional abbreviations are used

ANS

8-anilino-naphthalene-1-sulfonate

FCCP

carbonyl cyanide p-trifluoromethoxyphenylhydrazone

PMS

phenazine methosulfate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Mitchell, Nature, 191 (1961) 144PubMedCrossRefGoogle Scholar
  2. P. Mitchell, Biol. Rev., 41 (1965) 445.CrossRefGoogle Scholar
  3. 2.
    E. C. Slater, Nature, 172 (1953) 975.PubMedCrossRefGoogle Scholar
  4. 3.
    P. D. Boyer, in: Oxidases and Related Redox Systems, vol. 2, T. E. King, H. S. Mason and M. Morrison (eds.), Wiley, New York, 1965, p. 994.Google Scholar
  5. 4.
    R. J. P. Williams, in: Current Topics in Bioenergetics, Vol. 3, D. R. Sanadi (ed.), Academic Press, New York, 1969, p. 79.Google Scholar
  6. 5.
    C. P. Lee, L. Ernster and B. Chance, European J. Biochem., 8 (1969) 153.CrossRefGoogle Scholar
  7. 6.
    H. Baum, G. S. Hall, J. Nelder and R. B. Beechei, Abstracts, Colloquium on Bioenergetics, Pugnochiuso, 1970, p. 59; Adriatica Editrice, Bari, in press.Google Scholar
  8. 7.
    M. E. Pullman and G. C. Monroy, J. Biol. Chem., 238 (1963) 3762.PubMedGoogle Scholar
  9. 8.
    L. Ernster, Abstr. Commun., 7th Meet. Eur. Biochem. Soc., Varna, 1971, p. 53.Google Scholar
  10. 9.
    K. Juntti, K. Asami and L. Ernster, manuscript in preparation.Google Scholar
  11. 10.
    C. P. Lee and L. Ernster, Meth. Enzymol., 10 (1967) 543.CrossRefGoogle Scholar
  12. 11.
    L. Ernster and C. P. Lee, Meth. Enzymol., 10 (1967) 729.CrossRefGoogle Scholar
  13. 12.
    L. Ernster and C. P. Lee, Meth. Enzymol., 10 (1967) 738.CrossRefGoogle Scholar
  14. 13.
    M. E. Pullman, H. S. Penefsky, A. Datta and E. Racker, J. Biol. Chem., 235 (1960) 3322.PubMedGoogle Scholar
  15. 14.
    K. Nordenbrand and L. Ernster, European J. Biochem., 18 (1971) 258.CrossRefGoogle Scholar
  16. 15.
    L. Horstman and E. Racker, J. Biol. Chem., 245 (1970) 1336.PubMedGoogle Scholar
  17. 16.
    C. P. Lee and L. Ernster, BBA Library, Elsevier, Amsterdam, 7 (1966) 218Google Scholar
  18. C. P. Lee and L. Ernster, European J. Biochem., 3 (1968) 391.CrossRefGoogle Scholar
  19. 17.
    L. Danielson and L. Ernster, Biochem. Z., 338 (1963) 188.PubMedGoogle Scholar
  20. 18.
    L. Ernster, K. Nordenbrand, C. P. Lee, Y. Avi-Dor and T. Hundal, in: Colloquium on Bioenergetics, Pugnochiuso, 1970, Adriatica Editrice, Bari, in press.Google Scholar
  21. 19.
    J. B. Warshaw, K. W. Lam, B. Nagy and D. R. Sanadi, Arch. Biochem. Biophys., 123 (1968) 385.PubMedCrossRefGoogle Scholar
  22. 20.
    A. E. Senior and J. C. Brooks, Arch. Biochem. Biophys., 140 (1970) 257.PubMedCrossRefGoogle Scholar
  23. 21.
    K. Asami, K. Juntti and L. Ernster, Biochim. Biophys. Acta, 205 (1970) 307.PubMedCrossRefGoogle Scholar
  24. 22.
    K. Asami, K. Juntti and L. Ernster, manuscript in preparation.Google Scholar
  25. 23.
    K. Juntti, K. Asami and L. Ernster, Abstr. Commun. 7th Meet. Eur. Biochem. Soc., Varna, 1971, p. 243.Google Scholar
  26. 24.
    C. P. Lee, G. F. Azzone and L. Ernster, Nature, 201 (1964) 152.Google Scholar
  27. 25.
    E. Racker and L. Horstman, J. Biol. Chem., 242 (1967) 2547.PubMedGoogle Scholar
  28. 26.
    B. Chance, A. Azzi, I. Y. Lee, C. P. Lee and L. Mela, in: Mitochondria-Structure and Function, L. Ernster and Z. Drahota (eds.), Academic Press, London, 1969, p. 233.Google Scholar
  29. 27.
    M. Klingenberg, in: Biological Oxidation, T. P. Singer (ed.), Wiley, New York, 1968, p. 3.Google Scholar

Copyright information

© Plenum Publishing Company Limited 1972

Authors and Affiliations

  • Lars Ernster
    • 1
  • Kerstin Juntti
    • 1
  • Kouichi Asami
    • 1
  1. 1.Biokemiska InstitutionenKungl. Universitetet i StockholmStockholmSweden

Personalised recommendations