Advertisement

Performance and Conservation of Osmotic Work by Proton-Coupled Solute Porter Systems

  • Peter Mitchell

Abstract

According to the chemiosmotic coupling conception of oxidative and photosynthetic phosphorylation systems, 1–3 the hydrogen and electron carriers of the respiratory chain and photoredox chain are looped across the non-aqueous (proton-insulating) M phase of the coupling membrane in such a way that redox activity along the chain is accompanied by the translocation of protons from one side of the membrane to the other, generating a protonmotive force of some 200 to 300 mV between the aqueous (proton-conducting) phases on either side. Thus, the primary physiological function of the respiratory chain and photoredox chain systems of mitochondria, chloroplasts and microorganisms is regarded as the provision of a source of power in the form of the proton current that can be used by appropriate systems plugged through the M phase of the coupling membrane.4–7

Keywords

Respiratory Chain Energy Transduction Proton Translocation Proton Current Respiratory Chain Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Mitchell, Nature, 191 (1961) 144.PubMedCrossRefGoogle Scholar
  2. 2.
    P. Mitchell, Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodmin, Cornwall, 1966.Google Scholar
  3. 3.
    P. Mitchell, Biol. Rev, 41 (1966) 445.PubMedCrossRefGoogle Scholar
  4. 4.
    P. Mitchell, J. Gen. Microbiol., 29 (1962) 25.PubMedGoogle Scholar
  5. 5.
    P. Mitchell, Biochem. Soc. Symp., 22 (1963) 142.Google Scholar
  6. 6.
    P. Mitchell, Federation Proc., 26 (1967) 1370.Google Scholar
  7. 7.
    P. Mitchell, Symp. Soc. Gen. Microbiol., 20 (1970) 121.Google Scholar
  8. 8.
    G. D. Greville, in: Current Topics in Bioenergetics, Vol. 3, D. R. Sanadi (ed.), Academic Press, New York, 1969, pp. 1–78.Google Scholar
  9. 9.
    D. A. Walker and A. R. Crofts, Ann. Rev. Biochem., 39 (1970) 389.PubMedCrossRefGoogle Scholar
  10. 10.
    P. Mitchell, Advan. Enzymol., 29 (1967) 33.Google Scholar
  11. 11.
    P. Mitchell, Chemiosmotic Coupling and Energy Transduction, Glynn Research, Bodmin, Cornwall, 1968.Google Scholar
  12. 12.
    P. Mitchell, in: Membranes and Ion Transport, Vol. 1, E. E. Bittar (ed.), Wiley, London, 1970, pp. 192–256.Google Scholar
  13. 13.
    A. Kepes, in: The Molecular Basis of Membrane Function, D. C. Tosteson (ed.), Prentice-Hall, Englewood Cliffs, New Jersey, 1969, pp. 353–389.Google Scholar
  14. 14.
    A. Kepes, in: Current Topics in Membranes and Transport, Vol. I, F. Bronner and A. Kleinzeller (eds.), Academic Press, New York, 1970, pp. 101–134.Google Scholar
  15. 15.
    H. R. Kaback, Ann. Rev. Biochem., 39 (1970) 561.CrossRefGoogle Scholar
  16. 16.
    H. R. Kaback, in: Current Topics in Membranes and Transport, Vol. 1, F. Bronner and A. Kleinzeller (eds.), Academic Press, New York, 1970, pp. 35–99.Google Scholar
  17. 17.
    J. B. Chappell and A. R. Crofts, in: Regulation of Metabolic Processes in Mitochondria, J. M. Tager, S. Papa, E. Quagliariello, and E. C. Slater (eds.), Elsevier, Amsterdam, 1966, pp. 293–316.Google Scholar
  18. 18.
    J. B. Chappell and K. N. Haarhoff, in: Biochemistry of Mitochondria, E. C. Slater, Z. Kaniuga, and L. Wojtczak (eds.), Academic Press, London, 1967, pp. 75–91.Google Scholar
  19. 19.
    J. B. Chappell, in: Inhibitors-Tools in Cell Research, Th. Bücher and H. Sies (eds.), Springer-Verlag, Berlin, 1969, pp. 335–350.Google Scholar
  20. 20.
    H. A. Lardy and S. M. Ferguson, Ann. Rev. Biochem., 38 (1969) 991.CrossRefGoogle Scholar
  21. 21.
    M. Klingenberg, in: Essays in Biochemistry, Vol. 6, P. N. Campbell and F. Dickens (eds.), Academic Press, London, 1970, pp. 119–159.Google Scholar
  22. 22.
    K. van Dam and A. J. Meyer, Ann. Rev. Biochem., 40 (1971) 115.CrossRefGoogle Scholar
  23. 23.
    J. D. McGivan and J. B. Chappell, Biochem. J., 127 (1972) 54 P.Google Scholar
  24. 24.
    L. Packer, S. Murakami and C. W. Mehard, Ann. Rev. Plant Physiol., 21 (1970) 271.CrossRefGoogle Scholar
  25. 25.
    R. A. Dilley, in: Current Topics in Bioenergetics, Vol. 4, D. R. Sanadi (ed.), Academic Press, New York, 1971, pp. 237–271.Google Scholar
  26. 26.
    J. D. McGivan and M. Klingenberg, European J. Biochem., 20 (1971) 392.CrossRefGoogle Scholar
  27. 27.
    S. Papa, N. E. Lofrumento, D. Kanduc, G. Paradies and E. Quagliariello, European J. Biochem., 22 (1971) 134.CrossRefGoogle Scholar
  28. 28.
    B. H. Robinson, G. R. Williams, M. L. Halperin, and C. C. Leznoff, J. Biol. Chem., 246 (1971) 5280.PubMedGoogle Scholar
  29. 29.
    F. E. Sluse, A. J. Meijer and J. M. Tager, FEBS Letters, 18 (1971) 149.PubMedCrossRefGoogle Scholar
  30. 30.
    H. W. Heldt and F. Sauer, Biochim. Biophys. Acta, 234 (1971) 83.PubMedCrossRefGoogle Scholar
  31. 31.
    W. A. Hamilton, in: Membranes: Structure and Function, J. R. Villanueva and F. Ponz (eds.), Academic Press, London, 1970, pp. 71–79.Google Scholar
  32. 32.
    D. F. Niven and W. A. Hamilton, Biochem. J., 127 (1972) 58 P.Google Scholar
  33. 33.
    F. M. Harold, Advan. Microbiol. Physiol., 4 (1970) 45.Google Scholar
  34. 34.
    F. M. Harold, Biochem. J., 127 (1972) 49 P.Google Scholar
  35. 35.
    E. M. Barnes and H. R. Kaback, J. Biol. Chem., 246 (1971) 5518.PubMedGoogle Scholar
  36. 36.
    H. R. Kaback and E. M. Barnes, J. Biol. Chem., 246 (1971) 5523.PubMedGoogle Scholar
  37. 37.
    W. N. Konings, E. M. Barnes and H. R. Kaback, J. Biol. Chem., 246 (1971) 5857.PubMedGoogle Scholar
  38. 38.
    G. K. Kerwar, A. S. Gordon and H. R. Kaback, J. Biol. Chem., 247 (1972) 291.PubMedGoogle Scholar
  39. 39.
    S. A. Short, D. C. White and H. R. Kaback, J. Biol. Chem., 247 (1972) 298.PubMedGoogle Scholar
  40. 40.
    I. West and P. Mitchell, J. Bioenergetics, 3 (1972) 445.CrossRefGoogle Scholar
  41. 41.
    J. H. Wang, in: Electron and Coupled Energy Transfer in Biological Systems, Vol. 1, T. E. King and M. Klingenberg (eds.), Marcel Dekker, New York, 1971, pp. 117–133.Google Scholar
  42. 42.
    P. Mitchell, J. Gen. Microbiol., 9 (1953) 273.PubMedGoogle Scholar
  43. 43.
    P. Mitchell, J. Gen. Microbiol., 11 (1954) 73.PubMedGoogle Scholar
  44. 44.
    P. Mitchell, Symp. Soc. Exp. Biol., 8 (1954) 254.Google Scholar
  45. 45.
    D. D. Tyler, Biochem. J., 111 (1969) 665.Google Scholar
  46. 46.
    P. Mitchell and J. Moyle, Discuss. Faraday Soc., 21 (1956) 258.CrossRefGoogle Scholar
  47. 47.
    P. Mitchell, Symp. Biochem. Soc., 16 (1959) 73.Google Scholar
  48. 48.
    T. R. Riggs, L. M. Walker and H. N. Christensen, J. Biol. Chem., 233 (1958) 1479.PubMedGoogle Scholar
  49. 49.
    D. L. Oxender and H. N. Christensen, J. Biol. Chem., 234 (1959) 2321.PubMedGoogle Scholar
  50. 50.
    R. K. Crane, D. Miller and I. Bihler, in: Membrane Transport and Metabolism, A. Kleinzeller and A. Kotyk (eds.), Academic Press, New York, 1961, pp. 439–449.Google Scholar
  51. 51.
    H. H. Ussing, Nature, 160 (1947) 262.CrossRefGoogle Scholar
  52. 52.
    W. F. Widdas, J. Physiol., 118 (1952) 23.Google Scholar
  53. 53.
    P. Mitchell, J. Bioenergetics, 3 (1972) 5.CrossRefGoogle Scholar
  54. 54.
    B. L. Horecker, M. J. Osborn, W. L. McLellan, G. Avigad and C. Asensio, in: Membrane Transport and Metabolism, A. Kleinzeller and A. Kotyk (eds.), Academic Press, New York, 1961, pp. 378–387.Google Scholar
  55. 55.
    I. C. West, Biochem. Biophys. Res. Commun., 41 (1970) 655.CrossRefGoogle Scholar
  56. 56.
    J. Stock and S. Roseman, Biochem. Biophys. Res. Commun., 44 (1971) 132.PubMedCrossRefGoogle Scholar
  57. 57.
    P. Mitchell and J. Moyle, European J. Biochem., 9 (1969) 149.CrossRefGoogle Scholar
  58. 58.
    F. M. Harold and D. Papineau, J. Membrane Biol., 8 (1972) 27.CrossRefGoogle Scholar
  59. 59.
    F. M. Harold and D. Papineau, J. Membrane Biol., 8 (1972) 45.CrossRefGoogle Scholar
  60. 60.
    F. Palmieri, G. Prezioso, E. Quagliariello and M. Klingenberg, European J. Biochem., 22 (1971) 66.CrossRefGoogle Scholar
  61. 61.
    E. R. Kashket and T. H. Wilson, Biochim. biophys. Acta, 193 (1969) 294.PubMedCrossRefGoogle Scholar
  62. 62.
    E. Pavlasova and F. M. Harold, J. Bacteriol., 98 (1969) 198.PubMedGoogle Scholar
  63. 63.
    P. Scholes, P. Mitchell and J. Moyle, European J. Biochem., 8 (1969) 450.CrossRefGoogle Scholar
  64. 64.
    P. Scholes and P. Mitchell, J. Bioenergetics, 1 (1970) 309.CrossRefGoogle Scholar
  65. 65.
    J. W. T. Wimpenny, J. Gen. Microbiol.,63 (1970) xv.Google Scholar
  66. 66.
    P. Mitchell, in: Energy Transduction in Respiration and Photosynthesis, E. Quagliariello, S. Papa and C. S. Rossi (eds.), Adriatica Editrice, Bari, 1971, pp. 123–149.Google Scholar
  67. 67.
    V. P. Skulachev, in: Current Topics in Bioenergetics, Vol. 4, D. R. Sanadi (ed.), Academic Press, New York, 1971, pp. 127–190.Google Scholar
  68. 68.
    B. Chance and M. Montai, in: Current Topics in Membranes and Transport, Vol. 2, F. Bronner and A. Kleinzeller (eds.), Academic Press, New York, 1972, pp. 99–156.Google Scholar
  69. 69.
    J. P. Reeves, Biochem. Biophys. Res. Commun., 45 (1971) 931.CrossRefGoogle Scholar
  70. 70.
    G. Semenza, Biochim. Biophys. Acta, 241 (1971) 637.PubMedCrossRefGoogle Scholar
  71. 71.
    E. P. Kennedy, in: The Lactose Operon, J. R. Beckwith and D. Zipser (eds.), Cold Spring Harbor Laboratory, New York, 1970, pp. 49–92.Google Scholar
  72. 72.
    W. Kundig, S. Ghosh and S. Roseman, Proc. Natn. Acad. Sci., U.S., 52 (1964) 1067.Google Scholar
  73. 73.
    S. Roseman, J. Gen. Physiol., 54 (1969) 138s.CrossRefGoogle Scholar
  74. 74.
    W. Kundig and S. Roseman, J. Biol. Chem., 246 (1971) 1393.PubMedGoogle Scholar
  75. 75.
    W. Kundig and S. Roseman, J. Biol. Chem., 246 (1971) 1407.PubMedGoogle Scholar
  76. 76.
    T. Nakazawa, R. D. Simoni, J. B. Hays and S. Roseman, Biochem. Biophys. Res. Commun., 42 (1971) 836.PubMedCrossRefGoogle Scholar
  77. 77.
    M. H. Saier, W. Scott Young and S. Roseman, J. Biol. Chem., 246 (1971) 5838.PubMedGoogle Scholar
  78. 78.
    T. Korte and W. Hengstenberg, European J. Biochem., 23 (1971) 295.CrossRefGoogle Scholar
  79. 79.
    P. Mitchell, in: Membrane Transport and Metabolism, A. Kleinzeller and A. Koytk (eds.), Academic Press, New York, 1961, pp. 22–34.Google Scholar
  80. 80.
    G. P. Brierley, M. Jurkowitz, K. M. Scott and A. J. Merola, J. Biol. Chem., 245 (1971) 5404.Google Scholar
  81. 81.
    G. P. Brierley, M. Jurkowitz, K. M. Scott, K. M. Hwang and A. J. Merola, Biochem. Biophys. Res. Commun., 43 (1971) 50.PubMedCrossRefGoogle Scholar
  82. 82.
    F. Palmieri, E. Quagliariello and M. Klingenberg, European J. Biochem., 17 (1970) 230.CrossRefGoogle Scholar
  83. 83.
    E. Quagliariello, G. Genchi and F. Palmieri, FEBS Letters, 13 (1971) 253.PubMedCrossRefGoogle Scholar
  84. 84.
    A. Kepes and G. N. Cohen, in: The Bacteria, Vol. 4, I. C. Gunsalus and R. Y. Stanier (eds.), Academic Press, New York, 1962, pp. 179–221.Google Scholar

Copyright information

© Plenum Publishing Company Limited 1972

Authors and Affiliations

  • Peter Mitchell
    • 1
  1. 1.Glynn Research LaboratoriesBodmin, CornwallEngland

Personalised recommendations