Advertisement

The Electromechanochemical Model of Mitochondrial Structure and Function

  • David E. Green
  • Sungchul Ji

Abstract

The gross configurational changes which mitochondria undergo during energization and deenergization were the experimental foundation stones for the conformational model which we first proposed in 1967.1–3 Out of these studies emerged the notion of the energized state of the transducing unit and the notion of coupling the relaxation of the energized unit either to the synthesis of ATP or to active transport.4 Implicit in the conformational model is the conservation of energy in a metastable state4,5 of the transducing unit rather than in a high-energy covalent intermediate.

Keywords

Oxidative Phosphorylation Charge Separation Energy Transduction Matrix Space Structural Dipole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. T. Penniston, R. A. Harris, J. Asai and D. E. Green. Proc. Nat. Acad. Sci. U.S.A., 59 (1968) 624.CrossRefGoogle Scholar
  2. 2.
    R. A. Harris, J. T. Penniston, J. Asai and D. E. Green, Proc. Nat. Acad. Sci. U.S.A., 59 (1968) 830.CrossRefGoogle Scholar
  3. 3.
    D. E. Green, J. Asai, R. A. Harris and J. T. Penniston, Arch. Biochem. Biophys., 125 (1968) 684.PubMedCrossRefGoogle Scholar
  4. 4.
    D. E. Green and H. Baum, Energy and the Mitochondrion, Academic Press, New York, 1970, p. 77.Google Scholar
  5. 5.
    D. E. Green and D. H. MacLennan, Metabolic Pathways, 3rd Ed., Vol. 1, Academic Press, Inc., New York, 1967, p. 47.Google Scholar
  6. 6.
    J. D. Watson and F. H. C. Crick, Nature, 171 (1953) 737, 694.Google Scholar
  7. 7.
    G. Vanderkooi and D. E. Green, Proc. Nat. Acad. Sci. U.S.A., 66 (1970) 615.CrossRefGoogle Scholar
  8. 8.
    G. Vanderkooi and M. Sundaralingam, Proc. Nat. Acad. Sci. U.S.A., 67 (1970) 233.CrossRefGoogle Scholar
  9. 9.
    H. E. Huxley, Science, 164 (1969) 1356.Google Scholar
  10. 10.
    J. T. G. Overbeck and J. Lijklema, in: Electrophoresis, Theory, Methods and Applications,M. Bier (ed.), Academic Press, Inc., New York, 1959, Chap. 1.Google Scholar
  11. 11.
    H. A. Laitinen, Chemical Analysis: An Advanced Text and Reference, McGraw-Hill Book Company, Inc., New York, 1960, p. 66.Google Scholar
  12. 12.
    H. Fernandez-Moran, T. Oda, P. V. Blair and D. E. Green, J. Cell Biol., 22 (1964) 63.PubMedCrossRefGoogle Scholar
  13. 13.
    K. Kopaczyk, J. Asai, D. W. Allmann, T. Oda and D. E. Green, Arch. Biochem. Biophys., 123 (1968) 602.PubMedCrossRefGoogle Scholar
  14. 14.
    H. S. Penefsky, M. E. Pullman, A. Datta and E. Racker, J. Biol. Chem., 233 (1960) 3330.Google Scholar
  15. 15.
    J. O’M. Bockris and S. Srinivasan, Fuel Cells: Their Electrochemistry, McGraw-Hill Book Company, New York, 1969, p. 607.Google Scholar
  16. 16.
    A. B. Hart and G. J. Womack, Fuel Cells: Theory and Applications, Chapman and Hall, London, 1967.Google Scholar
  17. 17.
    V. P. Skulachev, FEES Letters, 11 (1970) 301.CrossRefGoogle Scholar
  18. 18.
    G. Vanderkooi and D. E. Green, Bio Science, 21 (1971) 409.Google Scholar
  19. 19.
    E. F. Korman and H. Vande Zande, Fed. Abstracts, 27 (1968) 526.Google Scholar
  20. 20.
    R. E. Dickerson, T. Takano, D. Eisenberg, O. B. Kallai, L. Samson, A. Cooper and E. Margoliash, J. Biol. Chem., 246 (1971) 1511.PubMedGoogle Scholar
  21. 21.
    J. E. Falk, Porphyrins and Metalloporphyrins, B.B.A. Library, Vol. 2, Elsevier Publishing Company, Amsterdam, 1964, p. 53.Google Scholar
  22. 22.
    D. E. Green, D. C. Wharton, A. Tzagoloff, J. S. Rieske and G. P. Brierley, in: Oxidases and Related Redox Systems, T. E. King, H. S. Mason and M. Morrison (eds.), Vol. 2, John Wiley and Sons, Inc., New York, 1965, p. 1032.Google Scholar
  23. 23.
    A. Tzagoloff and P. Meagher, J. Biol. Chem., 246 (1971) 7328.PubMedGoogle Scholar
  24. 24.
    O. Hatase, T. Wakabayashi and D. E. Green, Configurational changes in submitochondrial particles (manuscript in preparation).Google Scholar
  25. 25.
    A. Tzagoloff, D. H. MacLennan and K. H. Byington, Biochemistry, 7 (1968) 1596.PubMedCrossRefGoogle Scholar
  26. 26.
    D. E. Green and T. Wakabayashi (unpublished observation).Google Scholar
  27. 27.
    D. W. Allmann, J. Munroe, T. Wakabayashi, R. A. Harris and D. E. Green, Bio-energetics, 1 (1970) 87.Google Scholar
  28. 28.
    P. Mitchell and J. Moyle, in: Biochemistry of Mitochondria, E. C. Slater, Z. Kaninga and L. Wojtczak (eds.), Academic Press, Inc., London, 1967, p. 53.Google Scholar
  29. 29.
    J. H. Young, G. A. Blondin and D. E. Green, Proc. Nat. Acad. Sci. U.S.A., 68 (1971) 1364.CrossRefGoogle Scholar
  30. 30.
    T. Takano, R. Swanson, O. B. Kallai and R. E. Dickerson, Conformational Changes Upon Reduction of Cytochrome c, Cold Spring Harbor Symposium on Quantitative Biology, June 1971.Google Scholar
  31. 31.
    D. E. Green and G. Vanderkooi, in: Physical Principles of Biological Membranes, G. Iverson and J. Lam (eds.), Gordon and Breach Science Publishers, Inc., New York, 1970, p. 287.Google Scholar
  32. 32.
    C. T. O’Konski and N. C. Stellwagen, Biophysical J., 5 (1965) 607.CrossRefGoogle Scholar
  33. 33.
    W. Junge, H. M. Emrich and H. T. Witt, in: Physical Principles of Biological Membranes, Proceedings of the Coral Gables Conference, Snell, et al. (eds.), Gordon and Breach Science Publishers, New York, 1970, p. 383.Google Scholar
  34. 34.
    For a discussion of the ATP synthesis mechanism via a direct union of ADP and P;, see Korman and McLick in this issue.Google Scholar
  35. 35.
    D. Agin, Proc. Nat. Acad. Sci. U.S.A., 57 (1967) 1232.CrossRefGoogle Scholar
  36. 36.
    J. A. Donlon and A. Rothstein, J. Membrane Biol., 1 (1969) 37.CrossRefGoogle Scholar
  37. 37.
    L. Bass and W. J. Moore, Nature, 214 (1967) 393.PubMedCrossRefGoogle Scholar
  38. 38.
    D. A. T. Dick, Cell Water, Butterworths, Inc., Washington, 1965, p. 5.Google Scholar
  39. 39.
    T. L. Hill, Proc. Nat. Acad. Sci. U.S.A., 58 (1967) 111.CrossRefGoogle Scholar
  40. 40.
    C. R. Hackenbrock, Proc. Nat. Acad. Sci. U.S.A., 61 (1968) 598.CrossRefGoogle Scholar
  41. 41.
    E. F. Korman, R. A. Harris, C. H. Williams, T. Wakabayashi, D. E. Green and E. Valdivia, Bioenergetics, 1 (1970) 387.CrossRefGoogle Scholar
  42. 42.
    J. Asai, G. A. Blondin, W. J. Vail and D. E. Green, Arch. Biochem. Biophys., 132 (1969) 524.PubMedCrossRefGoogle Scholar
  43. 43.
    M. J. Lee, R. A. Harris, T. Wakabayashi and D. E. Green, Bioenergetics, 2 (1971) 13.CrossRefGoogle Scholar
  44. 44.
    T. Wakabayashi, J. M. Smoly and D. E. Green, Bioenergetics (1972) in press.Google Scholar
  45. 45.
    G. R. Hunter and G. P. Brierley, J. Cell Biol., 50 (1971) 250.PubMedCrossRefGoogle Scholar
  46. 46.
    N. E. Weber and P. V. Blair, Biochem. Biophys. Res. Commun., 36 (1969) 987.PubMedCrossRefGoogle Scholar
  47. 47.
    N. E. Weber and P. V. Blair, Biochem. Biophys. Res. Commun., 36 (1970) 821.CrossRefGoogle Scholar
  48. 48.
    D. E. Green, N.Y. Acad. Sci.,Conference on Membrane structure and its Biological Applications, June 2–4, 1971 (in press).Google Scholar
  49. 49.
    G. Vanderkooi and R. A. Capaldi, N.Y. Acad. Sci., Conference on Membrane Structure and its Biological Applications,June 2–4, 1971, in press.Google Scholar
  50. 50.
    Y. Hatefi, Ada. Enzymol.,F. F. Nord (ed.), 25 (1963) 275.Google Scholar
  51. 51.
    D. E. Green and R. F. Brucker, Bio Science (1972), 22 (1972) 13.Google Scholar
  52. 52.
    H. Muirhead and M. F. Perutz, Cold Spring Harbor Symp. Quant. Biol., 28 (1963) 451.CrossRefGoogle Scholar
  53. 53.
    J. C. Brooks, (unpublished observation).Google Scholar
  54. 54.
    E. F. Korman and J. McLick, Proc. Nat. Acad. Sci. U.S.A., 67 (1970) 1130.CrossRefGoogle Scholar
  55. 55.
    J. T. Penniston (unpublished observation).Google Scholar
  56. 56.
    P. B. Garland, R. A. Clegg, P. A. Light and C. I. Raglan, in: Inhibitors: Tools in Cell Research, T. Bücher and H. Sies (eds.), Springer-Verlag, New York, 1969, p. 217.Google Scholar
  57. 57.
    J. A. Berden and E. C. Slater, Biochim. Biophys. Acta, 216 (1970) 237.PubMedCrossRefGoogle Scholar
  58. 58.
    E. Racker, Mechanisms in Bioenergetics, Academic Press, New York, 1965, p. 145.Google Scholar
  59. 59.
    G. R. Drysdale and M. Cohen, J. Biol. Chem., 233 (1958) 1574.PubMedGoogle Scholar
  60. 60.
    P. G. Heytler, Biochemistry, 2 (1963) 357.PubMedCrossRefGoogle Scholar
  61. 61.
    M. E. Pullman, H. S. Penefsky, A. Datta and E. Racker, J. Biol. Chem., 235 (1960) 3322.PubMedGoogle Scholar
  62. 62.
    E. Racker, J. Biol. Chem., 235 (1960) 148.Google Scholar
  63. 63.
    D. H. MacLennan and A. Tzagoloff, J. Biol. Chem., 241 (1966) 1933.PubMedGoogle Scholar
  64. 64.
    H. A. Lardy and G. Feldott, Ann. N.Y. Acad. Sci., 54 (1951) 636.PubMedCrossRefGoogle Scholar
  65. 65.
    P. D. Boyer, in: Biological Oxidations, T. P. Singer (ed.), Interscience Publishers, New York, 1968, p. 210.Google Scholar
  66. 66.
    A. E. Senior and J. C. Brooks, Arch. Biochem. Biophys., 141 (1970) 257.CrossRefGoogle Scholar
  67. 67.
    L. Ernster, C. P. Lee and S. Janda, in: Biochemistry of Mitochondria, E. C. Slater, Z. Kaninga and L. Wojtczak (eds.), Academic Press, London, 1967, p. 29.Google Scholar
  68. 68.
    H. A. Lardy, J. L. Connelly and D. Johnson, Biochemistry, 3 (1964) 1961.PubMedCrossRefGoogle Scholar
  69. 69.
    G. D. Greville, in: Current Topics in Bioenergetics, Vol. 3, Academic Press, New York, 1969, p. I.Google Scholar
  70. 70.
    D. H. Jones and P. D. Boyer, J. Biol. Chem., 244 (1969) 5767.PubMedGoogle Scholar
  71. 71.
    P. D. Mitchell, Chemiosmotic Coupling. and Energy Transduction, Glynn Research Ltd., Bodmin, 1968.Google Scholar
  72. 72.
    J. H. Young, G. A. Blondin and D. E. Green, Proc. Nat. Acad. Sci. U.S.A., 68 (1971) 1364.CrossRefGoogle Scholar
  73. 73.
    L. Packer and K. Utsumi, Arch. Biochem. Biophys., 131 (1969) 386.PubMedCrossRefGoogle Scholar
  74. 74.
    R. S. Cockrell, E. J. Harris and B. C. Pressman, Biochemistry, 5 (1966) 2326.PubMedCrossRefGoogle Scholar
  75. 75.
    C. Moore and B. C. Pressman, Biochem. Biophys. Res. Commun., 15 (1964) 562.CrossRefGoogle Scholar
  76. 76.
    A. Fonyo, Biochem. Biophys. Res. Commun., 32 (1968) 624.PubMedCrossRefGoogle Scholar
  77. 77.
    D. D. Tyler, Biochem. J., 111, 665 (1969).Google Scholar
  78. 78.
    H. Rasmussen, B. Chance and E. Ogata, Proc. Nat. Acad. Sci. U.S.A., 53 (1965) 1069.CrossRefGoogle Scholar
  79. 79.
    M. Montai, B. Chance and C. P. Lee, J. Mem. Biol., 2 (1970) 201.CrossRefGoogle Scholar
  80. 80.
    A. L. Lehninger, in Biomembranes, Vol. 2 (Ed. L. A. Manson ), Plenum Publishing Corp., New York, 1971 ), p. 147.Google Scholar
  81. 81.
    D. H. MacLennan (unpublished observation).Google Scholar
  82. 82.
    C. P. Lee and L. Ernster, in: Regulation of Metabolic Processes in Mitochondria, Tager, et al. (eds.), Elsevier Publishing Company, Amsterdam, 1966, p. 218.Google Scholar
  83. 83.
    H. R. Mahler and E. H. Cordes, Biological Chemistry, Harper and Row, Publishers, New York, 1966, p. 619.Google Scholar
  84. 84.
    K. Van Dam and H. F. Ter Welle, ref. 83, p. 235.Google Scholar
  85. 85.
    D. H. MacLennan, J. M. Smoly and A. Tzagoloff, J. Biol. Chem., 243 (1968) 1589.PubMedGoogle Scholar
  86. 86.
    C. P. Lee and L. Ernster, Biochem. Biophys. Acta., 81, (1964) 187.Google Scholar
  87. 87.
    P. Mitchell and J. Moyle, Nature, 208 (1965) 1205.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Company Limited 1972

Authors and Affiliations

  • David E. Green
    • 1
  • Sungchul Ji
    • 1
  1. 1.Institute for Enzyme ResearchUniversity of WisconsinMadisonUSA

Personalised recommendations