ATP Synthesis in Oxidative Phosphorylation: A Direct-Union Stereochemical Reaction Mechanism

  • Ephraim F. Korman
  • Jerome McLick


A fundamental understanding of oxidative phosphorylation will involve chemical reaction mechanisms. Since chemical reaction mechanisms describe in detail the making and/or breaking of chemical bonds, before a meaningful reaction mechanism can be formulated for a given reaction, the actual bonds involved must be known. This applies to all chemical reactions, including the chemical reactions in oxidative phosphorylation.


Oxidative Phosphorylation Reaction Intermediate Isotopic Exchange Oxygen Exchange Trigonal Bipyramid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a recent review of oxidative phosphorylation see: H. A. Lardy and S. M. Ferguson, Ann. Rev. Biochem., 38 (1969) 991.CrossRefGoogle Scholar
  2. 2.
    R. D. Hill and P. D. Boyer, J. Biol. Chem., 242 (1967) 4320.PubMedGoogle Scholar
  3. 3.
    D. H. Jones and P. D. Boyer, J. Biol. Chem., 244 (1969) 5767.PubMedGoogle Scholar
  4. 4.
    P. D. Boyer, in: Biological Oxidations, T. P. Singer (ed.), Interscience, New York, 1968, p. 193.Google Scholar
  5. 5.
    P. D. Boyer, in: Current Topics in Bioenergetics, D. R. Sanadi (ed.), Vol. 2, Academic Press, New York, 1967, p. 99.Google Scholar
  6. 6.
    P. C. Chan, A. L. Lehninger and T. Enns, J. Biol. Chem., 235 (1960) 1790.PubMedGoogle Scholar
  7. 7.
    R. A. Mitchell, R. D. Hill and P. D. Boyer, J. Biol. Chem., 242 (1967) 1793.PubMedGoogle Scholar
  8. 8.
    R. Kluger, F. Covitz, E. Dennis, L. D. Williams and F. H. Westheimer, J. Amer. Chem. Soc., 91 (1969) 6066.CrossRefGoogle Scholar
  9. 9.
    F. H. Westheimer, Accounts Chem. Res., 1 (1968) 70.CrossRefGoogle Scholar
  10. 10.
    E. L. Muetterties, Accounts Chem. Res., 3 (1970) 266.CrossRefGoogle Scholar
  11. 11.
    E. L. Muetterties, W. Mahler and R. Schmutzler, Inorg. Chem., 2 (1963) 613.CrossRefGoogle Scholar
  12. 12.
    For the original presentation of this reaction mechanism, see: E. F. Korman and J. McLick, Proc. Nat. Acad. Sci. (U.S.), 67 (1970) 1130.CrossRefGoogle Scholar
  13. 13.
    For a treatment of the very important concept of tight substrate binding during enzyme catalysis, especially of reaction intermediates and transition states, see: R. Wolfenden, Accounts Chem. Res.,5 (1972) 10.Google Scholar
  14. 14.
    For a useful pictorial introduction to general reaction stereochemistry at tetrahedral substrates see: L. H. Sommer, Stereochemistry, Mechanism and Silicon, Chap. 11, McGraw-Hill, New York, 1965.Google Scholar
  15. 15.
    We predict that an analog of ATP in which the terminal P-O-P oxygen bridge atom is replaced by a methylene bridge (P-CHZ P) inert to enzymatic hydrolysis could, nevertheless, incorporate 180 from H218O into the terminal phosphorus center.Google Scholar
  16. 16.
    For an introduction to the important concept of proton involvement in biological oxidation-reduction mechanisms see: G. A. Hamilton in Progress in Bioorganic Chemistry,E. T. Kaiser and F. J. Kezdy, (eds.), Vol. 1, Interscience, New York, 1970, p. 83.Google Scholar
  17. 17.
    R. A. Harris, J. T. Pennington, J. Asai, and D. E. Green, Proc. Nat. Acad. Sci. (U.S.), 59 (1968) 830.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Company Limited 1972

Authors and Affiliations

  • Ephraim F. Korman
    • 1
  • Jerome McLick
    • 1
  1. 1.Institute for Enzyme ResearchUniversity of WisconsinMadisonUSA

Personalised recommendations