Advertisement

Functional Organization of Intramembrane Particles of Mitochondrial Inner Membranes

  • Lester Packer

Abstract

It is generally assumed that the high efficiency of electron transport and energy coupling in primary energy transducing membranes is the result of a special spatial arrangement of the interacting components within the membrane. Indeed, in recent years much evidence has been accumulated for an assymmetrical organization of the electron transport components of the inner mitochondrial membrane. Thus, cytochrome c appears to be localized at the outside surface of the inner membrane; ATPase at the inside surface; and cytochrome oxidase and cytochrome b within the hydrophobic membrane center. These concepts accord with the known sidedness of cytochrome c and ATPase reactivity and extractability; and with the disruption of the membrane structure upon extraction of cytochrome oxidase or cytochrome b (cf. ref. 1).

Keywords

Mitochondrial Membrane Unsaturated Fatty Acid Functional Organization Outer Mitochondrial Membrane Energy Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Chance and C. P. Lee (eds.), Probes of Structure and Function of Macromolecules and Membranes, Vol. 1, Academic Press, New York and London, 1971.Google Scholar
  2. 2.
    M. Klingenberg, Eur. J. Biochem., 13 (1970) 247.PubMedCrossRefGoogle Scholar
  3. 3.
    J. M. Wrigglesworth, L. Packer and D. Branton, Biochim. Biophys. Acta, 205 (1970) 125.CrossRefGoogle Scholar
  4. 4.
    D. Branton, PNAS, 55 (1966) 1048.PubMedCrossRefGoogle Scholar
  5. 5.
    J. Wehrli, K. Muhlethaler and H. Moor, Experimental Cell Res., 59 (1970) 336.CrossRefGoogle Scholar
  6. 6.
    R. L. Melnick and L. Packer, Biochim. Biophys. Acta, in press.Google Scholar
  7. 7.
    L. Packer, J. K. Pollak, E. A. Munn and G. D. Greville, J. Bioenergetics, in press.Google Scholar
  8. 8.
    M. M. Guarnieri and R. M. Johnson, Adv. Lip. Res., 8, (1970) 115.Google Scholar
  9. 9.
    J. M. Lyons and C. M. Asmundson, J. Amer. Oil Chem. Soc., 42 (1965) 1056.CrossRefGoogle Scholar
  10. 10.
    J. W. Proudlock, J. M. Haslam and A. W. Linnane, BBRC, 37 (1969) 847.PubMedGoogle Scholar
  11. 11.
    J. M. Wrigglesworth and L. Packer, J. Bioenergetics, 1 (1970) 33.Google Scholar
  12. 12.
    D. R. House and L. Packer, J. Bioenergetics, 1 (1970) 273.CrossRefGoogle Scholar
  13. 13.
    P. P. Da Silva, J. Cell Biol., in press.Google Scholar
  14. 14.
    W. Stoeckenius and D. M. Engelman, J. Cell Biol., 42 (1969) 613.PubMedCrossRefGoogle Scholar
  15. 15.
    R. C. Stancliff, M. A. Williams, K. Utsumi and L. Packer, Arch. Biochem. Biophys., 131 (1969) 629.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Company Limited 1972

Authors and Affiliations

  • Lester Packer
    • 1
  1. 1.Department of Physiology-AnatomyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations