Molecular Theory of Nucleation

  • J. W. Corbett
  • H. L. Frisch
  • D. Peak
  • M. St. Peters
Conference paper
Part of the The IBM Research Symposia Series book series (IRSS)


The science of nucleation is briefly surveyed and many attendant challenges are noted. The emerging molecular-level theory of nucleation is discussed as is the importance of a diffusion-controlled reaction kinetic treatment in that theory. Experimental study of nucleation at the molecular level is discussed.


Critical Nucleus Molecular Theory Critical Nucleus Size Bulk Free Energy Uniform Initial Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For recent surveys see “Nucleation”, Edited by A. C. Zettlemoyer (Marcel Dekker, N. Y., 1969).Google Scholar
  2. 2.
    M. Volmer and A. Weber, Z. Phys. Chem. (Leipzig) 119, 277 (1926).Google Scholar
  3. 3.
    R. Becker and W. Döring, Ann. Physik, 24, 719 (1935).CrossRefGoogle Scholar
  4. 4.
    J. B. Zeldovich, Acta Physicochimica, USSR, 18, 1 (1943).Google Scholar
  5. 5.
    Of course the assumption of the classical theory is that there is no dissociation for the nucleation and growth reactions.Google Scholar
  6. 6.
    L. Farkas, Z. Phys. Chem. 125, 236 (1927).Google Scholar
  7. 7.
    W. G. Courtney, J. Chem. Phys. 36, 2009, 2018 (1962).CrossRefGoogle Scholar
  8. 8.
    For a clear review of these matters see P. P. Wegener and J.-Y. Parlange, Naturwissen. 57, 525 (1970).CrossRefGoogle Scholar
  9. 9.
    J. Frenke 1, J. Chem. Phys. 7, 200 (1939) and in “Kinetic Theory of Liquids” (Oxford Univ. Press, Clarendon, 1946 ), p. 381.CrossRefGoogle Scholar
  10. 10.
    F. Kuhrt, Z. Phys. 131, 185, 205 (1952).Google Scholar
  11. 11.
    J. Lothe and G. M. Pound, J. Chem. Phys. 36, 2080 (1962).CrossRefGoogle Scholar
  12. 12.
    See W. J. Dunning in Ref. 1, p. 1.Google Scholar
  13. 13.
    See J. Lothe and G. M. Pound in Ref. 1, p. 109.Google Scholar
  14. 14.
    H. Reiss and J. L. Katz, J. Chem. Phys. 46, 2496 (1967).CrossRefGoogle Scholar
  15. 15.
    H. Reiss, J. L. Katz and E. R. Cohen, J. Chem. Phys. 48, 5553 (1968).CrossRefGoogle Scholar
  16. 16.
    H. L. Jaeger, E. J. Willson, P. G. Hill and K. C. Russell, J. Chem. Phys. 51, 5380 (1969).CrossRefGoogle Scholar
  17. 17.
    D. B. Dawson, E. J. Willson, P. G. Hill and K. C. Russell, J. Chem. Phys. 51, 5389 (1969).CrossRefGoogle Scholar
  18. 18.
    J. L. Katz, Proceedings of the Clark Univ. Conf. on Nucleation, May 1972, to be published.Google Scholar
  19. 19.
    C. Carlier and H. L. Frisch, Phys. Rev., to be published.Google Scholar
  20. 20.
    In fact the release of this heat in hypersonic nozzle experiments causes an increase in pressure which is what is actually measured.Google Scholar
  21. 21.
    J. P. Hirth and G. M. Pound, Prog. Mater. Sci. 11, 35 (1963).Google Scholar
  22. 22.
    M. Okuyama and J. T. Zung, J. Chem. Phys. 46, 1580 (1967).CrossRefGoogle Scholar
  23. 23.
    G. O. Goodman, J. Chem. Phys. 53, 2281 (1970).Google Scholar
  24. 24.
    F. O. Goodman and J. D. Gillerlain, J. Chem. Phys. 54, 3077 (1971).Google Scholar
  25. 25.
    J. A. Pople, this conference.Google Scholar
  26. 26.
    We ignore here the growth via coalescence of clusters.Google Scholar
  27. 27.
    M. V. Smoluchowski, Z. Phys. Chem. 92, 129 (1917).Google Scholar
  28. 28.
    The Smoluchowski boundary condition obtains for β→∞.Google Scholar
  29. 29.
    F. C. Collins and G. E. Kimball, J. Coll. Sci. 4, 25 (1949).CrossRefGoogle Scholar
  30. 30.
    H. L. Frisch and F. C. Collins, J. Chem. Phys. 20, 1797 (1952).CrossRefGoogle Scholar
  31. 31.
    T. R. Waite, Phys. Rev. 107, 463, 471 (1957); J. Chem. Phys. 28, 103 (1958).CrossRefGoogle Scholar
  32. 32.
    D. Peak and J. W. Corbett, Phys. Rev. B5, 1226 (1972).CrossRefGoogle Scholar
  33. 33.
    D. Peak, H. L. Frisch and J. W. Corbett, Rad. Eff. 11, 149 (1971).CrossRefGoogle Scholar
  34. 34.
    Roughly as g1/3 Google Scholar
  35. 35.
    For a recent summary see “Vacancies and Interstitials in Metals”, Edited by A. Seeger, D. Schumacher, W. Schilling and J. Siehl (North-Ho11and Press, Amsterdam, 1970).Google Scholar
  36. 36.
    See, for example, E. W. Müller in Ref. 35, p. 557 and R. W. Balluffi and D. N. Seidman in Ref. 37, p. 563.Google Scholar
  37. 37.
    Radiation Induced Voids in Metals, Edited by J. W. Corbett and L. C. Ianniello, ( U.S.A.E.C., Washington, 1972 ).Google Scholar
  38. 38.
    H. P. Huntington in “Encyclopedia of Chemical Technology” Suppl. Volume 2nd Edition ( John Wiley & Sons, N.Y., 1971 ) p. 278.Google Scholar
  39. 39.
    See, for example, I. A. Blech and E. S. Meieran, Appl. Phys. Letters, 11, 263 (1967).CrossRefGoogle Scholar
  40. 40.
    P. R. Huebotter and T. R. Bump in Ref. 37, p. 84.Google Scholar
  41. 41.
    It is also felt that some gas, e. g., He, in the void is required to stabilize the void morphology; therefore this is heterogeneous nucleation.Google Scholar
  42. 42.
    R. W. Powell and K. C. Russell, Rad. Eff. 12, 127 (1972).CrossRefGoogle Scholar
  43. 43.
    F. L. Vook and K. L. Brower, this proceedings.Google Scholar
  44. 44.
    E. Whittle, D. A. Dows and G. C. Pimentel, J. Chem. Phys. 22, 1943 (1954).Google Scholar
  45. 45.
    See B. Meyer, “Low Temperature Spectroscopy” (Amer. Elsevier Publ., N. Y., 1971 ).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • J. W. Corbett
    • 1
  • H. L. Frisch
    • 1
  • D. Peak
    • 1
  • M. St. Peters
    • 1
  1. 1.State University of New York at AlbanyAlbanyUSA

Personalised recommendations