Advertisement

Properties of Localized States in Disordered Materials

  • Karl F. Freed
Conference paper
Part of the The IBM Research Symposia Series book series (IRSS)

Abstract

The transition between localized and extended electronic states in disordered materials is considered by the use of two different models. The mathematical analogy between this transition and phase transitions and critical points in fluids and magnets is stressed and exploited. The localization probability and range in the neighborhood of the transition are shown to have critical exponent type behavior with the exponents 13/6 and -2/3, respectively. A preliminary discussion of electron mobility in disordered materials is also presented.

Keywords

Localize State Extended State Percolation Theory Chalcogenide Glass Average Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a review and further references see E. N. Economou, M. H. Cohen, K. F. Freed, and E. S. Kirkpatrick in Amorphous and Liquid Semiconductors, J. Taue, ed,, (Plenum, New York) to be published.Google Scholar
  2. 2.
    N. F. Mott and E. A. Davis, Electronic Processes in Noncrystal-line Materials (Clarendon Press, Oxford, 1971),Google Scholar
  3. 3.
    I. M. Lifshitz, Adv. Phys. 13, 403 (1964).CrossRefGoogle Scholar
  4. 4.
    M. H. Cohen, H. Fritzsche, and S. R. Ovshinsky, Phys. Rev. Letters 22, 1065 (1969).CrossRefGoogle Scholar
  5. 5.
    P. W. Anderson, Phys. Rev. 109, 1492 (1958).CrossRefGoogle Scholar
  6. 6.
    J. M. Ziman, J. Phys. C. 1, 1532 (1968).CrossRefGoogle Scholar
  7. 7.
    V.K.S. Shante and S. Kirkpatrick, Adv. Phys. 20, 325 (1971).CrossRefGoogle Scholar
  8. 8.
    S. F. Edwards, J. Phys. C. 3, L30 (1970); J. Non-Cryst, Solids 4, 417 (1970).Google Scholar
  9. 9.
    K. F. Freed and M. H. Cohen, Phys. Rev. B3, 3400 (1971).CrossRefGoogle Scholar
  10. 10.
    F. Yonezawa and T. Matsubara, Progr. Theoret. Phys. (Kyoto) 35, 357, 759 (1966); P. Soven, Phys. Rev. 156, 809 (1967); D. W. Taylor, ibid. 156, 1017 (1967); P. L. Leath, ibid. 171, 725 (1968); B. Veclicky, S. Kirkpatrick and H. Ehrenreich, ibid. 175, 747 (1968); P. Soven, ibid. 178, 1136 (1969); and S. Kirkpatrick, B. Velicky and H. Ehrenreich, ibid. B1, 3250 (19 70).Google Scholar
  11. 11.
    S. F. Edwards and Y. B. Gulyaev, Proc. Phys. Soc. (London) 83, 495 (1964).CrossRefGoogle Scholar
  12. 12.
    B. Halperin and M. Lax, Phys. Rev. 148, 722 (1966); J. Zittartz and J. S. Langer, ibid. 148, 741 (1966).CrossRefGoogle Scholar
  13. 13.
    K. F, Freed, J. Phys, C, 4, L331 (1971); Phys. Rev. B5, 4802 (1972).Google Scholar
  14. 14.
    E. N. Economou and M. H. Cohen, Phys. Rev. B5, 2931 (1972).CrossRefGoogle Scholar
  15. 15.
    K. F. Freed, Advan. Chem, Phys. 22, 1 (1972).CrossRefGoogle Scholar
  16. 16.
    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals ( McGraw-Hill, New York, 1965 ).Google Scholar
  17. 17.
    S. F. Edwards, Proc. Phys. Soc. (London) 85, 613 (1965); Natl. Bur. Std. (U.S.) Misc. Publ. 273, 225 (1966).CrossRefGoogle Scholar
  18. 18.
    R. M. White and P. W. Anderson, Phil. Mag. 25, 737 (1972).CrossRefGoogle Scholar
  19. 19.
    T. Lukes (private communication).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Karl F. Freed
    • 1
    • 2
  1. 1.The Department of Chemistry and James Franck InstituteThe University of ChicagoChicagoUSA
  2. 2.Alfred P. Sloan FoundationUSA

Personalised recommendations