Approximations for Large-Molecule Calculations

  • Frank E. Harris
Part of the The IBM Research Symposia Series book series (IRSS)

Abstract

The papers in this section deal with the actual computational methods used in studies of the electronic structures of large molecules and localized states in solids. Such studies differ from those applicable to small molecules through the necessity of choosing methods which do not outstrip our computing capacities, and differ from conventional infinite-crystal studies through a lack of exploitable translational symmetry. The regime under consideration is thereby characterized by a maximum in difficulty of precise calculation, but this difficulty is to some extent compensated by the fact that relatively crude results can often be highly useful.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, for example, P.O. Lowdin and O. Goscinski, Int. J. Quantum Chem. 85, 685 (1971); P.R. Certain and J.O. Hirschfelder, J. Chem. Phys. 52, 5977 (1970); B. Kirtman, Chem. Phys. Lett. 1, 631 (1968).Google Scholar
  2. 2.
    See, for example, T.H. Dunning and V. McKoy, J. Chem. Phys. 47, 1735 (1967); J. Linderberg and Y. Ohrn, J. Chem. Phys. 49, 716 (1968); B. Schneider, H.S. Taylor and R. Yaris, Phys. Rev. A 19 855 (1970); J. Paldus, J. Cizek, and I. Shavitt, Phys. Rev. A 5, 50 (1972).CrossRefGoogle Scholar
  3. 3.
    J.W.D. Connolly and K. H. Johnson, Chem. Phys. Lett. 10, 616 (1971); see also their contribution in this volume.CrossRefGoogle Scholar
  4. 4.
    P.O. Löwdin, Phys. Rev. 97, 1509 (1955); see also U. Kaldor and F. E. Harris, Phys. Rev. 183, 1 (1969); W.A. Goddard, Phys. Rev. 157, 73 (1967).CrossRefGoogle Scholar
  5. 5.
    K. Ruedenberg, Phys. Rev. Lett. 21, 1105 (1971); F.E. Harris, J. Chem. Phys. 46, 2769 (1967).Google Scholar
  6. 6.
    I. Shavitt, J. Comput. Phys. 6, 124 (1970), and unpublished work.CrossRefGoogle Scholar
  7. 7.
    See, for example, N. Sabelli and J. Hinze, J. Chem. Phys. 50, 684 (1969); P.S. Bagus, N. Bessis and C.M. Moser, Phys. Rev. 179, 39 (1969).CrossRefGoogle Scholar
  8. 8.
    C.F. Bender and E.R. Davidson, J. Phys. Chem. 70, 2675 (1966).CrossRefGoogle Scholar
  9. 9.
    R.K. Nesbet, Phys. Rev. 155, 51 (1967).CrossRefGoogle Scholar
  10. 10.
    K.G. Kay and H.J. Silverstone, J. Chem. Phys. 51, 956, 4287 (1969); 53, 4269 (1970).CrossRefGoogle Scholar
  11. 11.
    See, for example, F. E. Harris and H. H. Michels, Adv. Chem. Phys. 13, 205 (1967).CrossRefGoogle Scholar
  12. 12.
    A. M. Lesk, Int. J. Quantum Chem. 3, 289 (1969); R.F. Stewart, J. Chem. Phys. 52, 431 (1970).Google Scholar
  13. 13.
    H. J. Monkhorst and F.E. Harris, Chem. Phys. Lett., 3, 537 (1969).CrossRefGoogle Scholar
  14. 14.
    R. Rein and F. E. Harris, Theor. Chim. Acta 6, 73 (1966).CrossRefGoogle Scholar
  15. 15.
    F. P. Billingsley and J. E. Bloor, J. Chem. Phys. 55, 5178 (1971).CrossRefGoogle Scholar
  16. 16.
    J. M. Herbelin and F. E. Harris, J. Am. Chem. Soc. 93, 2565 (1971).CrossRefGoogle Scholar
  17. 17.
    See, for example, J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill, New York, 1970.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Frank E. Harris
    • 1
  1. 1.Department of PhysicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations