Advertisement

Brain-Endocrine Interaction: Are Some Effects of ACTH and Adrenocortical Hormones on Neuroendocrine Regulation and Behaviour Mediated Via Central Catecholamine Neurons?

  • K. Fuxe
  • T. Hökfelt
  • G. Jonsson
  • P. Lidbrink

Abstract

During the last decade it has become increasingly clear that hormonal steroids and pituitary hormones exert important actions on the brain influencing particularly neuroendocrine and behavioural functions (Martini and Ganong 1966, Ganong and Martini 1967, 1969, Mártir, i et al. 1970, Martini and Meites 1970, De Wied and Weijnen 1970). Many physiological, pharmacological and biochemica] studies suggest that the central catecholamine (CA) neurons could be involved in the control of the secretions of the various releasing and inhibitory factors regulating the secretion of the hormones from the anterior pituitary (Sawyer et al. 1949, Stefano et al. 1965, Donoso and Stefano 1967, Fuxe et al. 1967, Stefano and Donoso 1967, Fuxe and Hökfelt 1967, 1969, Schneider and McCann 1969, Kamberi et al. 1969) and various behavioural functions (Seiden and Carlsson 1964, Carlsson 1966, Hansson 1967, Stein 1968, Randrup and Munkvad 1968, Reis and Fuxe 1968, Arbuthnott et al. 1971). Of great interest is a small tubero-in fundibular DA system (Jonsson et al. 1971a, b, c) which probably is involved in the control of gonadotrophin secretion (Fuxe et al. 1967).

Keywords

Median Eminence ACTH Secretion Conditioned Avoidance Hormonal Steroid ACTH Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahkén, K., Fuxe, K., Hambergee, L. and Hökfelt, T. (1971): Turnover changes in the tubero-infundibular dopamine neurons during the ovarian cycle of the rat. Endocrinology88, 1415–1424.Google Scholar
  2. Andén, N.-E. (1970): Effects of amphetamine and some other drugs on central catecholamine neurons. In: Amphetamines and Related Compounds. Raven Press, New York.Google Scholar
  3. Andén, N.-E., Corrodi, H., Dahlström, A., Fuxe, K. and Hökfelt, T. (1966a): Effects of tyrosine hydroxylase inhibition on the amine levels of central monoamine neurons. Life Sci.5, 561–568.Google Scholar
  4. Andén, N.-E., Dahlström, A., Fuxe, K. and Larsson, K. (1966b): Functional role of the nigro-neostriatal dopamine neurons. Acta pharmacol. (Kbh.)24, 263–274.Google Scholar
  5. Andén, N.-E., Corrodi, H. and Fuxe, K. (1969): Turnover studies using synthesis inhibition. In: Metabolism of Amines in the Brain. MacMillan, London.Google Scholar
  6. Applezweig, M. H. and Baudry, F.D. (1955): The pituitary-adrenocortical system in avoidance learning. Psychol. Rep.1, 417–420.Google Scholar
  7. Arbuthnott, C., Fuxe, K. and Ungerstedt, U. (1971): Central catecholamine turnover and self-stimulation behaviour. Brain Res. 27, 406–413.PubMedGoogle Scholar
  8. Bertler, A., Carlsson, A. and Rosengren, E. (1958): A method for the fluori-metric determination of adrenaline and noradrenaline in tissues. Acta physiol. scand.44, 273–292.PubMedGoogle Scholar
  9. Bhatacharya, A. N. and Marks, B. H. (1969a): Reserpine and chlorpromazine-induced changes in hypothalamo-hypophyseal-adrenal system in rats in the presence and absence of hypothermia. J. Pharmacol, exp. Ther.165, 108–116.Google Scholar
  10. Bhattacharya, A. N. and Marks, B. H. (1969b): Effects of pargyline and amphetamine upon acute stress responses in rats. Proc. Soc. exp. Biol. (N. Y.)130, 1194–1198.Google Scholar
  11. Bliss, E. L., Ailion, J. and Zwanziger, J. (1968): Metabolism of norepinephrine, serotonin and dopamine in rat brain with stress. J. Pharmacol, exp. Ther.164, 122–134.Google Scholar
  12. Bobon, D. P., Janssen, P. A. J. and Bobon, J. (Eds) (1970): Modern Problems in Pharmacopsychiatry, Vol. 5. The Neuroleptics. Karger, Basel, München, Paris, New York.Google Scholar
  13. Bohus, B. (1968): Pituitary ACTH release and avoidance behaviour of rats with Cortisol implants in mesencephalic reticular formation and median eminence. Neuro-endocrinology3, 355–365.Google Scholar
  14. Bohus, B. and Endröczi, E. (1965): The influence of pituitary-adrenocortical functions on the avoiding conditioned reflex activity. Acta physiol. Acad. Sci. hung.26, 183–189.PubMedGoogle Scholar
  15. Bohus, B. and Wied, D. de (1966): Inhibitory and facilitatory effect of two related peptides on extinction of avoidance behavior. Science153, 318–320.PubMedGoogle Scholar
  16. Bohus, B. and Lissák, K. (1968): Adrenocortical hormones and avoidance behaviour of rats. Int. J. Neuro pharmacol.7, 301–306.Google Scholar
  17. Bohus, B., Nyakas, Cs. and Endröczi, E. (1968): Effects of adrenocorticotropic hormone on avoidance behavior of intact and adrenalectomized rats. Int. J. Neuro-Pharmacol.7, 307–314.Google Scholar
  18. Brodish, A. and Long, C. N. H. (1956): Changes in blood ACTH under various experimental conditions studied by means of a cross-circulation technique. Endocrinology59, 666–676.PubMedGoogle Scholar
  19. Bunney, W. E. Jr. and Davies, J. M. (1965): Arch. gen. Psychiat.13, 483.PubMedGoogle Scholar
  20. Butcher, L. L. and Andén, N.-E. (1969): Effects of apomorphine and amphetamine on schedule-controlled behaviour: reversal of tetrabenazine suppression and dopaminergic correlates. Europ. J. Pharmacol.6, 255.Google Scholar
  21. Carlsson, A. (1959): The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol. Rev.11, 490–493.PubMedGoogle Scholar
  22. Carlsson, A. (1966): Drugs, which block the storage of 5-hydroxytryptamine and related amines. In: Handbuch der experimentellen Pharmakologie. Springer, Berlin, Heidelberg, New York.Google Scholar
  23. Carlsson, A. and Lindqvist, M. (1962): In vivo decarboxylation of a-methyl Dopa and a-methyl metatyrosine. Acta physiol. scand.54, 87–94.PubMedGoogle Scholar
  24. Carlsson, A., Fuxe, K., Hamberger, B. and Lindqvist, M. (1966): Biochemical and histochemical studies on the effects of imipramine-like drugs and (+-amphetamine on central and peripheral catecholamine neurons. Acta physiol. scand.67, 481–497.PubMedGoogle Scholar
  25. Coppen, A. (1970): Pituitary-adrenal activity during psychosis and depression. In: Pituitary, Adrenal and the Brain. Ed. by D. DeWied and J. A. W. M. Weijnen. Progr. Brain Res. 32. Elsevier, Amsterdam, pp. 336–342.Google Scholar
  26. Corrodi, H. and Hansson, L. (1966): Central effects of an inhibition of tyrosine hydroxylation. Psychopharmacologia (Berl.)10, 116–125.Google Scholar
  27. Corrodi, H. and Jonsson, G. (1967): The formaldehyde fluorescence method for the histochemical demonstration of biogenic monoamines. A review on the methodology. J. Histochem. Cytochem.15, 65–78.Google Scholar
  28. Corrodi, H., Ftjxe, K. and Hökfelt, T. (1968): The effect of immobilization stress on the activity of central monoamine neurons. Life Sci.7, 107–112.PubMedGoogle Scholar
  29. Corrodi, H., Fuxe, K., Hamberger, B. and Ljttngdahl, Å. (1970): Studies on central and peripheral noradrenaline neurons using a new dopamine-β-hydroxylase inhibitor. Europ. J. Pharmacol.12, 145–155.Google Scholar
  30. Corrodi, H., Ftjxe, K., Lidbrink, P. and Olson, L. (1971): Minor tranquillizers, stress and central catecholamine neurons. Brain Res. 29, 1–16.PubMedGoogle Scholar
  31. Costa, E. (1970): Simple neuronal models to estimate turnover rate of noradrenergic transmitters in vivo. In: Biochemistry of Simple Neuronal Model. Advance in Biochemical Psychopharmacology. Haven Press, New York.Google Scholar
  32. Costa, E. and Neff, N. H. (1970): Estimation of turnover rates to study the metabolic regulation of the steady-state level of neuronal monoamines. In: Handbook of Neurochemistry. Plenum Press, New York, London.Google Scholar
  33. Crisp, A. H. and Roberts, F. J. (1963): The response of an adrenalectomised patient to ECT. Amer. J. Psychiat.119, 784–785.PubMedGoogle Scholar
  34. Dallman, M. F. and Yates, F. E. (1968): Anatomical and functional mapping of central neural input and feedback pathways of the adrenocortical system. Mem. Soc. Endocr.17, 39–72.Google Scholar
  35. Donoso, A. O. and Stefano, F. J. E. (1967): Sex hormones and concentration of noradrenaline and dopamine in the anterior hypothalamus of castrated rats. Ex-perientia (Basel)23, 665–666.Google Scholar
  36. Endröczi, E. and Lissák, K. (1962): Spontaneous goal-directed motor activity related to the alimentary conditioned reflex behaviour and its regulation by neural and humoral factors. Acta physiol. Acad. Sci. hung.21, 265–283.Google Scholar
  37. Falck, B., Hillarp, N.-Å., Thieme, G. and Torp, A. (1962): Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem.10, 348–354.Google Scholar
  38. Florvall, L. and Corrodi, H. (1970): Dopamine β-hydroxylase inhibitors. The preparation and the dopamine β-hydroxylase inhibitory activity of some compounds related to dithiocarbamic acid and thiuramdisulfide. Acta pharmacol. suec.7, 7–22.Google Scholar
  39. Fuxe, K. and Hansson, L. C. F. (1967): Central catecholamine neurons and conditioned avoidance behaviour. Psychopharmacologia. (Berl.)11, 439–447.Google Scholar
  40. Fuxe, K. and Hökfelt, T. (1967): The influence of central catecholamine neurons on the hormone secretion from the anterior and posterior pituitary. In: Neurosecretion. Springer Verlag, New York.Google Scholar
  41. Fuxe, K. and Hökfelt, T. (1969): Catecholamines in the hypothalamus and the pituitary gland. In: Frontiers in Neuroendocrinology. Ed. by W. F. Ganong and L. Martini. Oxford University Press, New York, London, Toronto.Google Scholar
  42. Fuxe, K. and Hökfelt, T. (1970a): Participation of central monoamine neurons in the regulation of anterior pituitary function with special regard to the neuroendocrine function of tubero-infundibular dopamine neurons. In: Aspects of Neuroendocrinology. Springer Verlag, Berlin, Heidelberg, Göttingen, New York.Google Scholar
  43. Fuxe, K. and Hökfelt, T. (1970b): Central monoaminergic systems and hypothalamic function. In: The Hypothalamus. Ed. by L. Martini, M. Motta and F. Fraschini. Academic Press, New York, London.Google Scholar
  44. Fuxe, K. and Ungerstedt, U. (1970): Histochemical, biochemical and functional studies on central monoamine neurons after acute and chronic amphetamine administration. In: Amphetamine and Belated Compounds. Raven Press, New York.Google Scholar
  45. Fuxe, K. and Lidbrink, P. (1971): On the function of central catecholamine neurons — their role in cardiovascular and arousal mechanisms. In: Pharmacology and Physiology of Monoamines in the G entrai Nervous System. (In press).Google Scholar
  46. Fuxe, K., Hökfelt, T. and Nilsson, O. (1967): Activity changes in the tubero-infundibular DA neurons of the rat during various states of the reproductive cycle. Life Sci.6, 2057–2061.PubMedGoogle Scholar
  47. Fuxe, K., Hökfelt, T. and Nilsson, O. (1969a): Castration, sex hormones and tubero-infundibular dopamine neurons. Neuroendocrinology5, 107–120.PubMedGoogle Scholar
  48. Fuxe, K., Hökfelt, T. and Nilsson, O. (1969b): Factors involved in the control of the activity of the tubero-infundibular dopamine neurons during pregnancy and lactation. Neuroendocrinology5, 257–270.PubMedGoogle Scholar
  49. Fuxe, K., Corrodi, H., Hökfelt, T. and Jonsson, G. (1970a): Central monoamine neurons and pituitary-adrenal activity. Progr. Brain Res.32, 42–56.Google Scholar
  50. Fuxe, K., Hökfelt, T. and Jonsson, G. (1970b): Participation of central monoaminergic neurons in the regulation of anterior pituitary secretion. In: Neurochemical Aspects of Hypothalamic Function. Ed. by L. Martini and J. Heites. Academic Press, New York, London.Google Scholar
  51. Fuxe, K., Hökfelt, T., Jonsson, G. and Ungerstedt, U. (1970c): Fluorescence microscopy in neuroanatomy. In: Contemporary Research in Neuroanatomy. Springer, New York.Google Scholar
  52. Fuxe, K., Hökfelt, T. and Ungerstedt, U. (1970d): Morphological and functional aspects of central monoamine neurons. Int. Rev. Neurobiol.13, 93–126.Google Scholar
  53. Fuxe, K., Hökfelt, T. and Jonsson, G. (1971a): The effect of gonadal steroids on the tubero-infundibular dopamine neurons. In: Excerpta Medica International Congress Series. (In press).Google Scholar
  54. Fuxe, K., Hökfelt, T. and Nilsson, O. (1971b): Effect of constant light and androgen-sterilization of the amine turnover of the tubero-infundibular dopamine neurons: blockade of cyclic activity and induction of a persistent high dopamine turnover in the median eminence. Acta endocr. (Kbh.) (In press).Google Scholar
  55. Ganong, W. F. (1970): Control of adrenocorticotropin and melanocyte-stimulating hormone secretion. In: The Hypothalamus. Ed. by L. Martini, M. Motta and F. Fraschini. Academic Press, New York, London.Google Scholar
  56. Ganong, W. F. (1971): Evidence that adrenergic systems in the brainstem inhibit ACTH secretion. In: Median Eminence. Karger, Basel. München, Paris, New York.Google Scholar
  57. Ganong, W. F. and Martini, L. (Eds) (1967): Neuroendocrinology. Vol. II. Academic Press, New York, London.Google Scholar
  58. Ganong, W. F. and Martini, L. (Eds) (1969): Frontiers in Neuroendocrinology. Oxford L’niversity Press, New York, London, Toronto.Google Scholar
  59. Glowinski, J. and Baldessarini, R. J. (1966): Metabolism of norepinephrine in the central nervous system. Pharmacol. Rev.18, 1201–1238.PubMedGoogle Scholar
  60. Gordon, R., Spector, S., Sjoerdsma, A. and Udenfriend, S. (1966): Increased synthesis of norepinephrine and epinephrine in the intact rat during exercise and exposure to cold. J. Pharmacol, exp. Ther.153, 440–447.Google Scholar
  61. Greven, H. M. and Wied, D. de (1967): The active sequence in the ACTH molecule responsible for inhibition of the extinction of conditioned avoidance behaviour in rats. Europ. J. Pharmacol.2, 14–16.Google Scholar
  62. Halász, B. and Szentágothai, J. (1960): Control of adrenocorticotropic function by direct influence of pituitary substance on the hypothalamus. Acta morph. Acad. Sci. hung.9, 251–261.Google Scholar
  63. Hansson, L. C. F. (1967): Evidence that the central action of (+)-amphetamine is mediated via catecholamines. Psychopharmacologia (Berl.)10, 289–297.Google Scholar
  64. Henkln, R. J. (1970): The effects of corticosteroids and ACTH on sensory systems. Progr. Brain Res.32, 270–293.Google Scholar
  65. Hökfelt, T. and Fuxe, K. (1971a): Effects of prolactin and ergot alkaloids on the tubero-infundibular dopamine (DA) neurons. Neuroendocrinology. (In press).Google Scholar
  66. Hökfelt, T. and Fuxe, K. (1971b): On the morphology and neuroendocrine role of the hypothalamic catecholamine neurons. In: Median Eminence. Karger, Basel, München, Paris, New York.Google Scholar
  67. Hornykiewicz, O. (1966): Dopamine (3-hydroxytyramine) and brain function. Pharmacol. Rev.18, 925–964.PubMedGoogle Scholar
  68. Iversen, L. L. and Simmonds, M. A. (1969): Studies of catecholamine turnover in rat brain using 3H-noradrenaline. In: Metabolism of Amines in the Brain. MacMillan, London.Google Scholar
  69. Javoy, F., Glowinski, J. and Kordon, C. (1968): Effects of adrenalectomy on the turnover of norepinephrine in the rat brain. Europ. J. Pharmacol.4, 103–104.Google Scholar
  70. Jones, B. E. (1969): Catecholamine containing neurons in the brainstem of the cat and their role in waking. Thesis. University of Delaware. Tixier et Fils, Lyon.Google Scholar
  71. Jones, B. E., Bobilljer, P. and Jotjvet, M. (1969): Effets de la destruction des neurones contenant des catecholamines du mésencéphale sur le cycle veilles-sommeils du chat. C.R. Soc. Biol. (Paris) 163, 176–180.Google Scholar
  72. Jonsson, G. (1969): Microfluorometric studies on the formaldehyde-induced fluorescence of noradrenaline in adrenergic nerves of rat iris. J. Histochem. Cytochem.17, 714–723.PubMedGoogle Scholar
  73. Jonsson, G. (1971): Quantitation of fluorescence of biogenic monoamines demonstrated with the formaldehyde fluorescence method. Progr. Histochem. Cytochem. (In press).Google Scholar
  74. Jonsson, G., Fuxe, K. and Hökfelt, T. (1971a): On the catecholamine innervation of the hypothalamus, with special reference to the median eminence. Brain Res. (In press).Google Scholar
  75. Jonsson, G., Fuxe, K. and Hökfelt, T. (1971b): Effect of castration and hypophyseal hormones on central catecholamine neurons. (In preparation).Google Scholar
  76. Jonsson, G., Fuxe, K., Hökfelt, T. and Lidbrink, P. (1971c): Pituitary-adrenal activity and central catecholamine neurons. (In preparation).Google Scholar
  77. Kamberi, I. A., Mical, R. S. and Porter, J. C. (1969): Luteinizing hormone-releasing activity in hypophyseal stalk blood and elevation by dopamine. Science166, 388–390.PubMedGoogle Scholar
  78. Kendall, J. W. (1970): Dexamethasone stimulation of running activity in the male rat. Hormones and Behavior1, 327336.Google Scholar
  79. Korányi, L. and Endróczi, E. (1967): The effect of ACTH on nervous processes. Neuroendocrinology2, 65–75.Google Scholar
  80. Korányi, L. and Endröczi, E. (1970): Influence of pituitary-adrenocortical hormones on thalamo-cortical and brainstem limbic circuits. Progr. Brain Res.32, 120–130.Google Scholar
  81. Levine, S. (1968): Hormones and conditioning. In: Nebraska Symposium on Motivation. Ed. by J. M. R. Jones. Univ. Nebraska Press.Google Scholar
  82. Levine, S. and Brush, F. (1967): Adrenocortical activity and avoidance learning as a function of time after avoidance training. Physiology and Behavior2, 385–388.Google Scholar
  83. Lidbrink, P. and Jonsson, G. (1971): Semiquantitative estimation of noradrenaline induced fluorescence in central noradrenaline nerve terminals. J. Histochem. Cytochem. (In press).Google Scholar
  84. Lindqvist, B. E. R. and Lindqvist, G. (1964): The antidepressant effect of amitripty-line in an adrenalectomised patient. Amer. J. Psychiat.120, 912–913.PubMedGoogle Scholar
  85. Lissák, K. and Endröczi, E. (1964): Neuroendocrine interrelationships and behavioural processes. In: Major Problems in Neuroendocrinology. Karger, Basel.Google Scholar
  86. Lissák, K., Endröczi, E. and Medgyesi, P. (1957): Somatisches Verhalten und Nebennierenrindentätigkeit. Arch. ges. Physiol.117, 265–273.Google Scholar
  87. Maas, J. W. and Mednieks, M. (1971): Hydrocortisone-mediated increase in norepinephrine uptake by brain slices. Science171, 178–179.PubMedGoogle Scholar
  88. Makks, B. H., Hall, M. M. and Bhattacharya, A. N. (1970): Psychopharmaco-logical effects and pituitary-adrenal activity. Progr. Brain Res.32, 58–70.Google Scholar
  89. Martini, L. and Ganong, W. F. (Eds) (1966): Neuroendocrinology. Vol. I. Academic Press, New York, London.Google Scholar
  90. Martini, L. and Meites, J. (Eds) (1970): Neurochemical Aspects of Hypothalamic Function. Academic Press, New York, London.Google Scholar
  91. Martini, L., Motta, M. and Fraschini, F. (Eds) (1970): The Hypothalamus. Academic Press, New York, London.Google Scholar
  92. Miller, R. E. and Ogawa, N. (1962): The effect of adrenocorticotropic hormone (ACTH) on avoidance conditioning in the adrenalectomized rat. J. comp, physiol. Psychol.55, 211–213.Google Scholar
  93. Motta, M., Mangili, G. and Martini, L. (1965): A “short” feedback loop in the control of ACTH secretion. Endocrinology 77, 392–395.PubMedGoogle Scholar
  94. Olson, L. and Fuxe, K. (1971): On the projections from the locus coeruleus noradrenaline neurons: The cerebellar innervation. Brain Res. 28, 165–171.PubMedGoogle Scholar
  95. Olson, L., Hamberger, B., Jonsson, G. and Malmfors, T. (1968): Combined fluorescence histochemistry and 3H-noradrenaline measurements of adrenergic nerves. Histochemie15, 38–45.PubMedGoogle Scholar
  96. Persson, T. and Waldeck, B. (1970): Some problems encountered in attempting to estimate catecholamine turnover using labelled tyrosine. J. Pharm. Pharmacol.22, 473–478.PubMedGoogle Scholar
  97. Poirier, L. J. and Sourkes, T. L. (1965): Influence of the substantia nigra on the catecholamine content of the striatum. Brain88, 181–192.PubMedGoogle Scholar
  98. Randeup, A. and Munkvad, I. (1968): Behavioural stereotypes induced by pharmacological agents. Pharmakopsychiat. Neuro-Psychopharmacol. (Stuttgart)1, 18–26.Google Scholar
  99. Reis, D. J. and Fuxe, K. (1968): Depletion of noradrenaline in brain stem neurons during sham rage behaviour produced by acute brainstem transection in cat. Brain Res. 7, 448–451.PubMedGoogle Scholar
  100. Sawyer, C. H., Markee, J. E. and Townsend, B. F. (1949): Cholinergic and adrenergic components in the neurohumoral control of the release of LH in the rabbit. Endocrinology44, 18–37.PubMedGoogle Scholar
  101. Scapagnini, U., Van Loon, G. R., Moberg, G. P. and Ganong, W. F. (1970): Effect of α-methyl-p-tyrosine on the circadian variation of plasma corticosterone in rats. Europ. J. Pharmacol.11, 266–268.Google Scholar
  102. Schildkraut, J. J. (1965): Amer. J. Psychiat.122, 509.PubMedGoogle Scholar
  103. Schildkraut, J. J., Shanberg, S. M., Bréese, G. R. and Kopin, J. (1967): Norepinephrine metabolism and drugs used in the affective disorders: A possible mechanism of action. Amer. J. Psychiat.124, 600–608.PubMedGoogle Scholar
  104. Schneider, H. P. G. and McCann, S. M. (1969): Possible role of dopamine as transmitter to promote discharge of LH-releasing factor. Endocrinology85, 121–132.PubMedGoogle Scholar
  105. Seiden, L. S. and Carlsson, A. (1964): Brain and heart catecholamine levels after L-Dopa administration in reserpine treated mice: correlations with conditioned avoidance response. Psychopharmacologia (Berl.)5, 178–181.Google Scholar
  106. Smelik, P. G. (1963): Failure to inhibit corticotropin secretion by experimentally induced increases in corticoid levels. Acta endocr. (Kbh.)44, 36–46.Google Scholar
  107. Stefano, F. J. E. and Donoso, A. O. (1967): Norepinephrine levels in rat hypothalamus during estrous cycle. Endocrinology81, 1405–1406.PubMedGoogle Scholar
  108. Stefano, F. J. E., Donoso, A. O. and Cukier, J. (1965): Hypothalamic noradrenaline changes in ovariectomized rats. Acta physiol. lat.-amer.15, 425–427.PubMedGoogle Scholar
  109. Stein, L. (1968): Chemistry of reward and punishment. In: Psychopharmacology. A Review of Progress 1957–1967. U.S. Publ. Health Service Publn. No. 1836, Washington, D.C.Google Scholar
  110. Stein, L. and Wise, C. D. (1969): Release of norepinephrine from hypothalamus and amygdala by rewarding medial forebrain bundle stimulation and amphetamine. J. comp, physiol. Psychol.67, 189–198.Google Scholar
  111. Svensson, T. H. and Waldeck, B. (1969): On the significance of central noradrenaline for motor activity: experiments with a new dopamine-β-hydroxylase inhibitor. Europ. J. Pharmacol.7, 278–282.Google Scholar
  112. Thierry, A. M., Javoy, F., Glowinski, J. and Kety, S. S. (1968): Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat. J. Pharmacol, exp. Ther.163, 163–171.Google Scholar
  113. Ungerstedt, U. (1971a): Stereotaxic mapping of the monoamine pathways in the rat brain. Acta physiol. scand. Suppl. 367, 1–48.Google Scholar
  114. Ungerstedt, U. (1971b): On the anatomy, pharmacology and function of the nigro-neostriatal dopamine system. Thesis. Karolinska Institutet, Stockholm.Google Scholar
  115. Van Loon, C. R. and Ganong, W. F. (1969): Effect of drugs which alter catecholamine metabolism on the inhibition of stress-induced ACTH secretion produced by L-dopa. Physiologist12, 381.Google Scholar
  116. Van Loon, C. R., Hilger, L., Cohen, R. and Ganong, W. F. (1969): Evidence for a hypothalamic adrenergic system that inhibits ACTH secretion in the dog. Fed. Proc.28, 438.Google Scholar
  117. Van Wimersma Greidanus, Tj B. (1970): Effects of steroids on extinction of an avoidance response in rats. A structure-activity relationship study. In: Pituitary, Adrenal and the Brain. Ed. by D. Defied and J. A. W. M. Weijnen. Progr. Brain Bes.32. Elsevier, Amsterdam, pp. 185–191.Google Scholar
  118. Weiss, J. M., McEwen, B. S., Silva, M. T. and Kalkut, M. (1970): Pituitary-adrenal alterations and fear responding. Amer. J. Physiol.218, 864–868.PubMedGoogle Scholar
  119. Wertheim, G., Conner, R. and Levine, S. (1969): Avoidance conditioning and adrenocortical function in the rat. Physiology and Behavior 4, 41–44.Google Scholar
  120. Wied, D. de (1964): Influence of anterior pituitary on avoidance learning and escape behavior. Amer. J. Physiol.207, 255–259.Google Scholar
  121. Wied, D. de (1966a): Inhibitory effect of ACTH and related peptides on extinction of conditioned avoidance behavior in rats. Proc. Soc. exp. Biol. (N. Y.)122, 28–32.Google Scholar
  122. Wied, D. de (1966b): Antagonistic effect of ACTH and glucocorticoids on avoidance behaviour of rats. In: 2nd International Congress on Hormonal Steroids. Excerpta Medica International Congress Series 111, Amsterdam, p. 89.Google Scholar
  123. Wied, D. de (1967): Opposite effect of ACTH and glucocorticosteroids on extinction of conditioned avoidance behavior. In: Proceedings of Second International Congress on Hormonal Steroids, Milan, May 1966. Excerpta Medica International Congress Series 132, Amsterdam, pp. 945–951.Google Scholar
  124. Wied, D. de (1969): Effects of peptide hormones on behavior. In: Frontiers in Neuroendocrinology. Oxford University Press, New York.Google Scholar
  125. Wied, D. de and Weijnen, J. A. W. M. (Eds) (1970): Pituitary, Adrenal and the Brain. Progr. Brain Res. 32. Elsevier, Amsterdam.Google Scholar
  126. Wied, D. de, Bohtjs, B. and Greven, H. M. (1968): Influence of pituitary and adrenocortical hormones on conditioned avoidance behaviour in rats. In: Endocrinology and Human Behaviour. Oxford University Press, London.Google Scholar
  127. Wied, D. de, Witter, A. and Lande, S. (1970): Anterior pituitary peptides and avoidance acquisition of hypophysectomized rats. In: Pituitary, Adrenal and the Brain. Ed. by D. De Wied and J. A. W. M. Weijnen. Progr. Brain Res. 32. Elsevier, Amsterdam, pp. 213–218.Google Scholar
  128. Wise, C. D. and Stein, L. (1969): Facilitation of brain self-stimulation by central administration of norepinephrine. Science163, 299–301.PubMedGoogle Scholar
  129. Woodbury, D. M. (1954): Effect of hormones on brain excitability and electrolytes. Recent Progr. Hormone Res.10, 65–107.Google Scholar
  130. Woodbury, D. M. (1958): Relation between the adrenal cortex and the central nervous system. Pharmacol. Rev.10, 275–357.PubMedGoogle Scholar
  131. Woodbury, D. M. and Vernadakis, A. (1966): Effects of steroids on the central nervous system. Methods Hormone Res. 5, 1–57.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 1973

Authors and Affiliations

  • K. Fuxe
    • 1
  • T. Hökfelt
    • 1
  • G. Jonsson
    • 1
  • P. Lidbrink
    • 1
  1. 1.Department of HistologyKarolinska InstitutetStockholmSweden

Personalised recommendations