The Use of Solubility Parameters for Solvent Selection in Asymmetric Membrane Formation

  • Elias Klein
  • James K. Smith

Abstract

The ability to form asymmetric membranes is the basis upon which relatively impermeable polymers have been adapted to yield reverse osmosis membranes that can provide purified water at technologically significant rates. The experiments reported by Loeb and Sourirajan[1], which were subsequently shown[2,3] to yield membranes having a relatively dense surface layer followed by a gradual transition to a supporting macroporous structure, initiated the subsequent research to explain the mechanism of formation of such structures. The preparation of porous membranes had been well known before that time. Elford[4] described the manufacture of porous cellulose nitrate; Vaughan[5] adapted the method to cellulose acetate; and Loeb attributes the leads which led to their experiments to earlier literature[6] on the formation of porous cellulose acetate membranes. But the unique property of the Loeb-Sourirajan membranes is their ability to exhibit the selectivity characteristic of the dense cellulose acetate, and yet provide water fluxes which indicate that the rate controlling layer can only be of the order of 0.25 µ, even when the gross thickness of the membranes is about 100 µ. It has been shown[3] that the structure is a composite exhibiting the characteristics of both a porous membrane and a thin dense membrane. With this fact it is possible to reconcile the diffusive transport data of cellulose acetate for both solute and water.

Keywords

Acetone MeOH Aniline Cyclohexane Phthalate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Loeb and S. Sourirajan, Adv. Chem. Ser., 38, 117 (1962).CrossRefGoogle Scholar
  2. 2.
    R. L. Riley, J. 0. Gardner, and U. Merten, Science, 143 801 (1964).Google Scholar
  3. 3.
    R. L. Riley, U. Merten, and J. 0. Gardner, Desalination, 1, 30 (1966).CrossRefGoogle Scholar
  4. 4.
    W. J. Elford, Trans. Faraday Soc., 33, 1094 (1937).CrossRefGoogle Scholar
  5. 5.
    M. F. Vaughan, Nature, 183, 43 (1959).CrossRefGoogle Scholar
  6. 6.
    A. Dobry, Bull. Soc. Chim. France, SeSerie III, 312 (1936).Google Scholar
  7. 7.
    A. S. Michaels and R. W. Baker, U.S. Patent No. 3,526, 588 (1970).Google Scholar
  8. 8.
    United States Department of the Interior, Office of Saline Water, 1970–1971 Saline Water Conversion Report, pp. 304–5.Google Scholar
  9. 9.
    ibid, p. 306.Google Scholar
  10. 10.
    T. E. Davis, G. W. Skiens, and O. Cotton, ACS Polymer Preprints, 12, No. 2, p. 378 (1971).Google Scholar
  11. 11.
    See, for example, the papers by Applegate and Antonson and by McKinney in this volume.Google Scholar
  12. 12.
    R. E. Kesting and A. Menefee, Kolloid Z. Z. Polym., 230, 341 (1969).CrossRefGoogle Scholar
  13. 13.
    R. E. Kesting, M. K. Barsh and A. Vincent, J. Appl. Polymer Sci., 9, 1873–93, (1965).CrossRefGoogle Scholar
  14. 14.
    R. E. Kesting, J. Appl. Polymer Sci., 9, 663 (1965).CrossRefGoogle Scholar
  15. 15.
    R. Bloch and M. A. Frommer, Desalination, 7, 259 (1970).CrossRefGoogle Scholar
  16. 16.
    M. A. Frommer, R. Matz and U. Rosenthal, Ind. Eng. Chem. Prod. Res. Devel., 10, 193 (1971).CrossRefGoogle Scholar
  17. 17.
    R. Bloch and M. A. Frommer, United States Department of the Interior, Office of Saline Water, 1969–70 Saline Water Conversion Report, p. 29.Google Scholar
  18. 18.
    S. Loeb, in Desalination by Reverse Osmosis, U. Merten (Ed.) M.I.T. Press, Cambridge, Mass., 1966, p. 69.Google Scholar
  19. 19.
    W. Banks and A. Sharpies, J. Appl. Chem., 16, 28, 94 (1966).Google Scholar
  20. 20.
    S. Manjikian, S. Loeb and J. W. McCutchan, Proceedings of the First International Desalination Symposium, Washington, D.C., 1965.Google Scholar
  21. 21.
    J. Hildebrand and R. Scott, Solubility of Non-Electrolytes, 3rd Ed., Reinhold, New York, 1949.Google Scholar
  22. 22.
    C. M. Hansen, Ind. Eng. Chem. Prod. Res. Devel., 8, 1 (1969).Google Scholar
  23. 23.
    C. M. Hansen and K. Skaarup, J. Paint Tech., 39, 511 (1967), or Ref. 25.Google Scholar
  24. 24.
    E. B. Bagley, T. P. Nelson and J. M. Scigliano, J. Paint Tech., 43, 35 (1971).Google Scholar
  25. 25.
    C. M. Hansen, Doctoral Dissertation, Technical University of Denmark, Danish Technical Press, Copenhagen, 1967.Google Scholar
  26. 26.
    E. Ott and H. Spurlin, Cellulose and Cellulose Derivatives, Part II, Interscience, New York, 1954.Google Scholar
  27. 27.
    Eastman Chemical Co., Technical Bulletins.Google Scholar
  28. 28.
    D. L. Hoernschemeyer and C. W. Saltonstall, Jr., Envirogenics Co., private communication.Google Scholar
  29. 29.
    M. A. Frommer, I. Feiner, O. Kedem end R. Bloch, Desalination, 7, 393 (1970).CrossRefGoogle Scholar
  30. 30.
    C. M. Hansen and A. Beerbower, “Solubility Parameters”, Encycl. Chem. Tech., Suppl. Vol., 1971.Google Scholar
  31. 31.
    S. Manjikian, Ind. Eng. Chem. Prod. Res. Devel., 6, 1 (1967)Google Scholar
  32. 32.
    L. A. Lee, United States Department of the Interior, Office of Saline Water, 1970–71 Saline Water Conversion Report, p. 381.Google Scholar
  33. 33.
    C. W. Saltonstall, F. C. Burnett, W. S. Higley, W. M. King and A. L. Vincent, United States Department of the Interior, Office of Saline Water Research and Development Progress Report No. 232, Jan. 1967.Google Scholar
  34. 34.
    E. Klein and J. K. Smith, ACS Polymer Preprints, 12, 268 (1971).Google Scholar
  35. 35.
    J. K. Smith and E. Klein, United States Department of the Interior, Office of Saline Water Research and Development Progress Report No. 630, 1971.Google Scholar
  36. 36.
    See the paper by M. A. Frommer and D. Lancet in this volume.Google Scholar
  37. 37.
    H. Burrell, Preprints, Division of Organic Coating and Plastics Chemistry, ACS, Vol. 31, 367 (1971).Google Scholar
  38. 38.
    M. L. Huggins, Ann. N. Y. Acad. Sci., 43, 1 (1942).CrossRefGoogle Scholar
  39. 39.
    G. J. Githens, P. A. Hitchcock, D. C. Sammon and G. E. Wakley, Desalination, 8, 369 (1970).CrossRefGoogle Scholar
  40. 40.
    W. W. Boddie, Doctoral Dissertation, Dartmouth University 1970.Google Scholar
  41. 41.
    G. M. Sletmoe, J. Paint Technology, 38, 641 (1966).Google Scholar
  42. 42.
    J. H. Daane and R. E. Barker, Polymer Letters, 2, 343 (1964).CrossRefGoogle Scholar
  43. 43.
    G. S. Park, Chapt. 5 in Diffusion in Polymers, J. Crank and G. S. Park, (Eds.), Academic Press, New York 1968.Google Scholar
  44. 44.
    J. K. Gilham, Appl. Polymer Symposia, 2, 59–75 (1966).Google Scholar
  45. 45.
    H. Strathmann, P. Scheible, and R. W. Baker, J. Appl. Polymer Sci., 15, 811 (1971).CrossRefGoogle Scholar
  46. 46.
    J. W. Richter and H. H. Hoehn, U.S. Patent No. 3,567, 632 (1971).Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Elias Klein
    • 1
  • James K. Smith
    • 1
  1. 1.Gulf South Research InstituteNew OrleansUSA

Personalised recommendations