Advertisement

Preparation, Morphology, and Transport Properties of Composite Reverse Osmosis Membranes for Seawater Desalination

  • R. L. Riley
  • G. Hightower
  • C. R. Lyons

Abstract

The modified cellulose acetate membrane, first prepared by Loeb and Sourirajan [1] in the 1960s, is clearly the starting point of the modern reverse osmosis process. Development of the thin-film composite membrane began after it was shown by electron microscopy that the asymmetric cellulose acetate membrane is a two-layered structure consisting of a thin, dense semipermeable barrier, about 2000 Å thick, supported by a finely porous substructure [2–4]. Because the membrane is effectively very thin, high water fluxes are attained.

Keywords

Cellulose Acetate Reverse Osmosis Composite Membrane Surface Porosity Reverse Osmosis Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Loeb and S. Sourirajan, Advan. Chem. Series, 38, 117 (1963).Google Scholar
  2. 2.
    R. L. Riley, H. K. Lonsdale, C. R. Lyons, and U. Merten, J. Appl. Polymer Sci., 11, 2143 (1967).CrossRefGoogle Scholar
  3. 3.
    R. L. Riley, H. K. Lonsdale, L. D. LaGrange, and C. R. Lyons, Office of Saline Water Research and Development Progress Report No. 386, U. S. Government Printing Office, Washington, D. C., May 1968.Google Scholar
  4. 4.
    R. L. Riley, J. O. Gardner, and U. Merten, Science, 143, 801 (1964).CrossRefGoogle Scholar
  5. 5.
    U. Merten, (Ed.), Desalination by Reverse Osmosis, M.I.T. Press, Cambridge, Massachusetts, 1966.Google Scholar
  6. 6.
    K. D. Vos, F. O. Burris, Jr., and R. L. Riley, J. Appl. Polymer Sci., 10, 825 (1966).CrossRefGoogle Scholar
  7. 7.
    R. L. Riley, H. K. Lonsdale, and C. R. Lyons, in Proceedings of the 3rd International Symposium on Fresh Water from the Sea, Dubrovnik, Yugoslavia, September 13–16, 1970, Vol. 2, p. 551Google Scholar
  8. R. L. Riley, H. K. Lonsdale, and C. R. Lyons, J. Appl. Polymer Sci., 15, 1267 (1966).CrossRefGoogle Scholar
  9. 8.
    H. K. Lonsdale, R. L. Riley, C. E. Milstead, L. D. LaGrange, A. S. Douglas, and S. B. Sachs, Office of Saline Water Research and Development Report No. 577, U. S. Government Printing Office, Washington, D. C., Oct. 1970.Google Scholar
  10. 9.
    H. K. Lonsdale, U. Merten, and R. L. Riley, J. Appl. Polymer Sci., 9, 1341 (1965).CrossRefGoogle Scholar
  11. 10.
    A. Goetz, U. S. Patent 2,926, 104 (1960).Google Scholar
  12. 11.
    R. Zsigmondy, Z. Angew. Chem., 30, 398 (1926).Google Scholar
  13. 12.
    R. L. Riley, U. Merten, and J. O. Gardner, Desalination, 1, 30 (1966).CrossRefGoogle Scholar
  14. 13.
    V. G. Levich, Physicochemical Hydrodynamics, Prentice Hall, Englewood Cliffs, New Jersey, 1962.Google Scholar
  15. 14.
    H. K. Lonsdale, R. L. Riley, C. R. Lyons, and D. P. Carosella, Jr., “Transport in Composite Reverse Osmosis Membranes,” Chapter 6 in Membrane Processes In Industry and Biomedicine, M. Bier (Ed.), Plenum Press, New York 1971.Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • R. L. Riley
    • 1
  • G. Hightower
    • 1
  • C. R. Lyons
    • 1
  1. 1.Gulf General Atomic CompanySan DiegoUSA

Personalised recommendations