Advertisement

Mathematical Models for Hydrologic Processes

  • G. de Marsily
Part of the Computer Applications in the Earth Sciences book series (CAES)

Abstract

Models of simulation of groundwater flow in sedimentary basins are generally used for water-resources optimization problems; however, a byproduct of their building may be additional information on the structure of the basins themselves.

In the first stage of the simulation procedure, the hydraulic parameters of the sediments (permeability, porosity) have to be determined, using lithostratigraphical and hydrological data. The values of these parameters are closely related to the sedimentation process itself.

Two different techniques of identification of these parameters are presented. Practical examples on Tertiary marine sediments in Aquitaine, and Quaternary alluvial sediments, will show the complement of information gained in this manner on the structure of the basins.

Keywords

Porous Medium Inverse Problem Hydraulic Head Observation Well Inverse Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baetz, C., Gouvernet, C., Marsily, G. de, Potie, L., 1967, Comportement hydraulique d’un materiel alluvial heterogene. Vallee de la Mole (Var): Chronique d’Hydrogeologie, Edition BRGM, no. 12, p. 153–163.Google Scholar
  2. BRGM, 1965, Carte piezometrique de la nappe captive des sables Eocenes en Gironde: BRGM, Ser. Geol. Reg. Aquitaine, chart.Google Scholar
  3. Coats, K. H., Dempsey, J. R., and Henderson, J. H., 1970, A new technique for determining reservoir description from field performance data: Soc. Petroleum Eng. Jour., p. 66–74.Google Scholar
  4. Duprat, A., Simler, L., Ungemach, P., 1969, Contribution de la prospection electrique a la recherche des caractéristiques hydrodynamiques d’un milieu aquifere: Terres & Eaux, v. 23, no. 62, p. 23–31.Google Scholar
  5. Emsellem, Y., 1970, Construction de modeles mathématiques en hydrogeologie: Pubi. Lab. d’Hydrogeologie Mathématique, Ecole des Mines, Fontainebleau, 129 p.Google Scholar
  6. Emsellem, Y., Lerolle, Y., and Marsily, G. de, 1970, Identification automatique des paramétrés hydrauliques: Convegno Intern, sulle Acque Sotterranee, Palermo, 35 p.Google Scholar
  7. Emsellem, Y., and Marsily, G. de, 1969, Restitution automatique des perméabilités d’une nappe. Le problème inverse et la deconvolution: La Houille Blanche, no. 8, p. 861–868.CrossRefGoogle Scholar
  8. Emsellem, Y., Marsily, G. de, 1971, An automatic solution for the inverse problem: Water Res. Res., v. 7, no. 5, p. 1264–1283.CrossRefGoogle Scholar
  9. Emsellem, Y., Marsily, G. de, Poitrinal, D., Ratsimiebo, M., 1971, Deconvolution et identification automatique de paramétrés en hydrologie: IASH, Intern. Sym. on Math. Models in Hydrology, Warsaw, 32 p.Google Scholar
  10. Freeze, R. A., 1971. Three dimensional, transient, saturated, unsaturated flow in a groundwater basin: Water Res. Res., v. 7, no. 2, p. 347–366.CrossRefGoogle Scholar
  11. Harbaugh, J. W., and Merriam, D. F., 1968, Computer applications in stratigraphic analysis: John Wiley & Sons, New York, 282 p.Google Scholar
  12. Jacod, J., and Joathon, P., 1971, Use of random-genetic models in the study of sedimentary processes: Jour. Intern. Assoc. Math. Geology, v. 3, p. 265–280.CrossRefGoogle Scholar
  13. Jacquard, P., and Jain, C., 1965, Recherche sur Tinterpretation des mesures de pression: Communication no. 19, Colloque de 1 Association de Recherche sur les Techniques de Forage et de Production, Institut Francais du Petrole (Ref. IFP 11P12), 45 p.Google Scholar
  14. Joathon, P., 1971, Representation d’une serie sedimentaire par un modele probabiliste. Application au processus d1ambarzoumian et etude de la structure de Chemery: These d’ingenieur- docteur, Nancy Univ. (no’. CNRS AO 5805 ), 84 p.Google Scholar
  15. Kisiel, C. C., 1971, General report on topic 7, objective functions and constraints in water resource systems: Session 15, Intern. Sym. on Math. Models in Hydrology, Intern. Assoc. Scientific Hydrology, Warsaw, 13 p.Google Scholar
  16. Kleinecke, D., 1971, Use of linear programming for estimating geohydrologic parameters of groundwater basins: Water Res. Res., v. 7, no. 2, p. 367–376.CrossRefGoogle Scholar
  17. Marionnaud, J. M., 1967, Coupes lithostratigraphiques interprétatives dans le Tertiaire Nord Aquitain: BRGM, Ser. Geol. Reg. d’Aquitaine, 2 plates.Google Scholar
  18. Marsily, G. de, 1972, Chapitre “Calculs” de “Traite d’Informatique Géologique” A paraitre prochainement chez Masson, Paris, 40 p.Google Scholar
  19. Matalas, N. C., 1969, System analysis in water resources investigations, in Computer applications in the earth sciences: Plenum Press, New York, p. 143–160.Google Scholar
  20. Matheron, G., 1965, Les variables regionalisees et leur estimation: Masson et Cie, Paris, 305 p.Google Scholar
  21. Matheron, G., 1967, Elements pour une theorie des milieux poreux: Masson et Cie, Paris, 166 p.Google Scholar
  22. Matheron, G., 1969, Le krigeage universel: Cahiers du Centre de Morphologie Mathématique (Fasc. 1), Ecole des Mines, Fontainebleau, 83 p.Google Scholar
  23. Matheron, G., and Huijbrechts, C., 1970, Universal kriging; an optimal method for estimating and contouring in trend surface analysis: Intern. Sym. Tech. for Decision Making in the Min. Ind., CIM, Montreal, 15 p.Google Scholar
  24. Nelson, W., 1970, A computer system for the analysis of flow and water quality in large heterogeneous groundwater basins: Convegno Intern, sulle Acque Sotteranee, Palermo, 9 p.Google Scholar
  25. Prickett, T. A., and Lunnqvist, C. G., 1968, Comparison between analog and digital simulation for aquifer evaluation, in The use of analog and digital computer in hydrology: Tucson, Pub1. IASH, Tucson, no. 81, p. 625–634.Google Scholar
  26. Remson, I., and others, 1971, Numerical methods in subsurface hydrology, with an introduction to the finite elements method: John Wiley & Sons, New York, 330 p.Google Scholar
  27. Schoeller, H., and others, 1969, Synthese des etudes sur le systeme multicouche des nappes tertiaires du nord de 1 Aquitaine: La Houille Blanche, no. 8, p. 907–918.Google Scholar
  28. Schoeller, H., and others, 1971, Etude par modele mathématique des risques de pollution par les eaux salees des aquiferes souterrains de Gironde: Intern. Union of Geodesy & Geophysics 15th Gen. Assembly (and IASH), Moscow, 25 p.Google Scholar
  29. Ungemach, P., Mostaghimi, F., and Duprat, A., 1969, Essais de deter mination du coefficient demmagasinement en nappe libre. Application a la nappe alluviale du Rhin: Intern. Assoc. of Scientific Hydrology, 14th annee, no. 2, p. 169–190.Google Scholar
  30. Weber, E. M., Peters, H. J., and Frankel, M. L., 1968, California, digital computer approach to ground water basin management studies, in The use of analog and digital computers in hydrology: Publ. IÁSH, Tucson, no. 80, p. 215–223.Google Scholar
  31. Witherspoon, P. A., Javandel, I., and Newman, S. P., 1968, Use of finite elements method in solving transient flow problems in aquifer systems - in The use of analog and digital computer in hydrology: Publ. IASH, Tucson, no. 81, p. 687–698.Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • G. de Marsily
    • 1
  1. 1.Ecole des Mines de ParisFrance

Personalised recommendations