Skip to main content

Kanzaki Forces and Electron Theory of Displaced Charge in Relaxed Defect Lattices

  • Chapter
Interatomic Potentials and Simulation of Lattice Defects

Abstract

Almost all work concerned with the electron theory of point defects in metals has dealt with the displaced charge under the assumption that lattice relaxation is neglected.

This paper develops a theory whereby the displaced charge around a defect can be calculated in the presence of such relaxation. The calculations require knowledge of:

  1. (a)

    Appropriate response functions for the perfect crystal. These, inevitably, can be found only approximately, and a procedure is adopted whereby direct use is made of the intensities of X-ray scattering at Bragg reflections for the perfect crystal.

  2. (b)

    A defect potential. This defect potential is defined as follows. We first strain the perfect lattice so that all the atomic positions, except for those at which the point defects reside, are as in the final equilibrium position of the defect lattice. Let the density in this strained but otherwise perfect lattice (Kanzaki lattice) be the sum of the perfectly periodic lattice density ρo(r) and a perturbation ρ1(r). The defect potential Vd(r) is then, by definition, that scattering potential required to convert the density ρo(r) + ρ1(r) in the Kanzaki lattice into the final state density ρf(r) = ρo(r) + ρ1(r) + ρd(r) with the defect introduced.

The central result of this paper then is a form of ρd(r) which is a sum of two terms:

  1. (a)

    The displaced charge due to the potential Vd(r) introduced into the perfect lattice, but with the nuclei held fast.

  2. (b)

    A term correcting this, which is shown to be rather closely related to ρ1(r) above, but involves also the defect potential Vd(r) It is also shown how a first approximation to this term presented here can be systematically refined.

Some preliminary numerical results for ρ 1(r) for a vacancy in copper are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. March, N. H., and Rousseau, J. S., Crystal Lattice Defects, 2: 1 (1971).

    Google Scholar 

  2. Kanzaki, H., J. Phys. Chem. Solids, 2: 24 (1957).

    Article  ADS  Google Scholar 

  3. Matsubara, T., J. Phys. Soc. Japan, 7: 270 (1952).

    Article  ADS  Google Scholar 

  4. Stott, M. J., Baranovsky, S., and March, N. H., Proc. Roy. Soc. A316: 210 (1970).

    ADS  Google Scholar 

  5. Beeby, J. L., Proc. Roy. Soc. A302: 113 (1967).

    ADS  Google Scholar 

  6. Stoddart, J. C., March, N. H., and Stott, M. H., Phys. Rev. 186: 683 (1969).

    Article  ADS  Google Scholar 

  7. Jones, W., and March, N. H., Proc. Roy. Soc. A317: 359 (1970).

    ADS  Google Scholar 

  8. Tewordt, L., Phys. Rev. 109: 61 (1958).

    Article  ADS  Google Scholar 

  9. March, N. H., Young, W. H., and Sampanthar, S., The Many Body Problem in Quantum Mechanics (Cambridge University Press) (1967).

    Google Scholar 

  10. Hohenberg, P. C., and Kohn, W., Phys. Rev. 136: B864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  11. Kohn, W., and Sham, L. J., Phys. Rev. 140: A1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  12. Stoddart, J. C., Beattie, A. M., and March, N. H., Int. Journ. Quantum Chem. 4: 35 (1971).

    Google Scholar 

  13. Hilton, D., March, N. H., and Curtis, A. R., Proc. Roy. Soc. A300: 391 (1967).

    ADS  Google Scholar 

  14. Harris, R., J. Phys. C. (Solid State Phys.), 3, 172 (1970).

    Article  ADS  Google Scholar 

  15. Alfred, L.C.R., and March, N. H., Phil. Mag. 2: 985 (1957).

    Article  ADS  Google Scholar 

  16. Seeger, A., and Bross, H., Z. Phys. 145: 161 (1956).

    Article  ADS  Google Scholar 

  17. Batterman, B., Chipman and de Marco, J. J., Phys. Rev. 122, 68 (1961).

    Article  ADS  Google Scholar 

  18. Jones, W., March, N. H., and Tucker, J. W., Proc. Roy Soc. A284: 289 (1965).

    ADS  Google Scholar 

  19. March, N. H., and Stoddart, J. C., Reports Prog. Phys. Vol 31: 533 (1968).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Press, New York

About this chapter

Cite this chapter

March, N.H., Rousseau, J.S. (1972). Kanzaki Forces and Electron Theory of Displaced Charge in Relaxed Defect Lattices. In: Gehlen, P.C., Beeler, J.R., Jaffee, R.I. (eds) Interatomic Potentials and Simulation of Lattice Defects. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1992-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1992-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1994-8

  • Online ISBN: 978-1-4684-1992-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics