A Study of Crack Propagation in Alpha-Iron

  • M. F. Kanninen
  • P. C. Gehlen


In previous attempts to simulate crack extension on a (100) plane in α-iron, it was not possible to induce the rupture of atomic bonds at the crack tip. The work reported here overcomes this deficiency by considering the crack front to be jogged. It is then found that an existing crack will heal or extend, depending on whether the stress-intensity factor is less or greater than a critical value. The results are in quantitative agreement with the critical stress-intensity factor determined indirectly in previous work and are consistent with the Griffith criterion for quasibrittle crack growth.


Crack Front Crack Closure Linear Elastic Fracture Mechanic Strain Energy Release Crack Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. C. Gehlen and M. F. Kanninen, Inelastic Behavior of Solids, M. F. Kanninen, W. A. Adler, A. R. Rosenfield, and R. I. Jaffee, eds., McGraw-Hill, New York, p. 587 (1970).Google Scholar
  2. 2.
    P. C. Gehlen, this volume.Google Scholar
  3. 3.
    J. P. Hirth, Inelastic Behavior of Solids, M. F. Kanninen, W. A. Adler, A. R. Rosenfield, and R. I. Jaffee (editors), McGraw-Hill, New York, p. 605 (1970).Google Scholar
  4. 4.
    A. A. Griffith, Phil. Trans. Roy. Soc. (London), A221, 163 (1920).ADSGoogle Scholar
  5. 5.
    G. R. Irwin, Handbuch der Physik, 79, 551 (1958).MathSciNetCrossRefGoogle Scholar
  6. 6.
    G. C. Sih and H. Liebowitz, Fracture, Vol. II, H. Liebowitz, editor, Academic Press Inc., New York (1968).Google Scholar
  7. 7.
    R. A. Johnson, Physical Review, 145, 423 (1966).ADSCrossRefGoogle Scholar
  8. 8.
    R. Chang, Int. J. Fracture Mech., 6, 111 (1970).Google Scholar
  9. 9.
    W. R. Tyson and L.C.R. Alfred, presentation at the Corrosion Fatigue Conference, the University of Connecticut, June 14–18, 1971.Google Scholar
  10. 10.
    G. I. Barenblatt, Advances in Applied Mechanics, 7, 55 (1962).MathSciNetCrossRefGoogle Scholar
  11. 11.
    J. B. Gibson, A. N. Goland, M. Milgram and G. H. Vineyard, Phys. Rev., 120, 1229 (1960).ADSCrossRefGoogle Scholar
  12. 12.
    J. N. Goodier and M. F. Kanninen, Technical Report No. 165, Division of Engineering Mechanics, Stanford University (1966).Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • M. F. Kanninen
    • 1
  • P. C. Gehlen
    • 2
  1. 1.Applied Mathematics and Mechanics Division, Columbus LaboratoriesBattelleColumbusUSA
  2. 2.Battelle, Columbus LaboratoriesMetal Science GroupColumbusUSA

Personalised recommendations