Advertisement

Computer Simulation of the Structure of High Angle Grain Boundaries

  • M. J. Weins

Abstract

The structure of a 36.8 degree [001] tilt boundary with the boundary symmetrically located between equivalent (110) planes was determined using various pairwise potentials. The calculation was done in a two-stage process. First one crystal was allowed to translate with respect to the other, and then the atoms were allowed to move from their lattice sites. The resulting structures were consistent with experimental evidence.

Keywords

Perfect Crystal Morse Potential Tilt Axis Sublimation Energy Atomistic Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Brillouin, Ann. Chem. Phys. 13, 77 (1898).Google Scholar
  2. 2.
    G. Quincke, Proc. Roy. Soc. A76, 431 (1905).ADSGoogle Scholar
  3. 3.
    W. Rosenhain, and J.C.W. Humphrey, J. Iron and Steel Inst. 87, 219 (1913).Google Scholar
  4. 4.
    W. Rosenhain and D. Ewin, J. Inst. Met. 10, 125 (1913).Google Scholar
  5. 5.
    M. L. Kronberg and F. H. Wilson, Trans. AIME 185 (1949).Google Scholar
  6. 6.
    M. J. Attardo and J. M. Galligar, Acta Met. 15, 395 (1967).CrossRefGoogle Scholar
  7. 7.
    W. Bollman, Phil. Mag. 16, 363 (1967).ADSCrossRefGoogle Scholar
  8. 8.
    D. G. Brandon, B. Ralph, S. Ranganathan and M. S. Wald, Acta Met. 12, 813 (1964).CrossRefGoogle Scholar
  9. 9.
    D. G. Brandon, Acta Met. 14, 1479 (1966).CrossRefGoogle Scholar
  10. 10.
    K. T. Aust, Recovery and Recrystallization of Metals, Ed. L. Himmel, Interscience Publ. p. 131 (1962).Google Scholar
  11. 11.
    G. Bishop and B. Chalmers, Scripta Met. 2, 133 (1968).CrossRefGoogle Scholar
  12. 12.
    R. Schober and R. W. Baluffi, Phil. Mag. 31, 846 (1970).Google Scholar
  13. 13.
    P. Tick Thesis MIT (1969).Google Scholar
  14. 14.
    J. E. Jones and A. E. Ingham, Proc. Roy. Soc. A107, 636 (1925).ADSGoogle Scholar
  15. 15.
    R.M.J. Cotterill and M. Doyama, Phy. Rev. 145, 465 (1966).ADSCrossRefGoogle Scholar
  16. 16.
    R.M.J. Cotterill and M. J. Doyama, Argon National Lab Report (1965).Google Scholar
  17. 17.
    M. J. Weins, H. Gleiter, and B. Chalmers, J. Appl. Phys. (to be published June 1971).Google Scholar
  18. 18.
    M. J. Weins, H. Gleiter, and B. Chalmers, Scripta Met. 4, 235 (1970).CrossRefGoogle Scholar
  19. 19.
    R. E. Hoffman, Acta Met. 4, 97 (1956).CrossRefGoogle Scholar
  20. 20.
    M. J. Weins and B. Chalmers, to be published.Google Scholar
  21. 21.
    H. Gleiter, Acta Met. 17, 565 (1969).CrossRefGoogle Scholar

References

  1. 1.
    L. A. Girifalco and V. G. Weizer, Phys. Rev., 114, 487 (1959).ADSCrossRefGoogle Scholar
  2. 2.
    R.M.J. Cotterill and M. Doyama, Phy. Rev. 145, 465 (1966).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • M. J. Weins
    • 1
  1. 1.Department of Materials EngineeringUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations