Simulating Surfaces by the Summation of Pairwise Interatomic Potentials

  • D. P. Jackson


Workers in surface science are often led, for lack of other more precise methods, to simulate surfaces by the computer summation of pairwise interatomic potentials, usually of very simple forms. In this paper, this approach is considered for a variety of surface problems. The surface collision problems: atom surface scattering and surface atom ejection are discussed in detail, and a new simulation of the latter is reported. The planar relaxation of surface layers is considered as a possible source of information on surface potentials.


Interatomic Potential Morse Potential Surface Field Surface Relaxation Surface Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Estermann, I. and Stern, O. Z. Phyik 61 (1930) 95.ADSCrossRefGoogle Scholar
  2. 2.
    French, J. B. NATO AGARDograph 112 (1966).Google Scholar
  3. 3.
    Goodman, F. O. Surf. Sci. 26 (1971) 327.ADSCrossRefGoogle Scholar
  4. 4.
    Oman, R. A. Proc. 5th Int. Symp. on Rarefied Gas Dynamics, Vol. 1, p. 83.Google Scholar
  5. 5.
    Lorenzen, J. and Raff, L. M. J. Chem. Phys. 49 (1968) 1165.ADSGoogle Scholar
  6. 6.
    Goodman, F. O. Surf. Sci. 7 (1967) 391.ADSCrossRefGoogle Scholar
  7. 7.
    Jackson, D. P. and French, J. B. Proc. 6th Int. Symp. on Rarefied Gas Dynamics, Vol. 2, p. 1119.Google Scholar
  8. 8.
    Logan, R. M. and Stickney, R. E. J. Chem. Phys. 44 (1966) 195.ADSGoogle Scholar
  9. 9.
    Goodman, F. O. J. Chem. Phys. 53 (1970) 2281.ADSGoogle Scholar
  10. 10.
    Jackson, D. P. University of Toronto UTIAS Report 134 (1968).Google Scholar
  11. 11.
    Goodman, F. O. Proc. 6th Int. Symp. on Rarefied Gas Dynamics, Vol. 2, p. 1105.Google Scholar
  12. 12.
    Kaminsky, M. Atomic and Ionic Impact Phenomena on Metal Surfaces, Chapter 10, Berlin (1965).CrossRefGoogle Scholar
  13. 13.
    Carter, G. and Colligon, J. S. Ion Bombardment of Solids, Chapter 7, London (1968).Google Scholar
  14. 14.
    Girifalco, L. A. and Weizer, V. G. Phys. Rev. 114 (1959) 687.ADSCrossRefGoogle Scholar
  15. 15.
    Jackson, D. P. to be published.Google Scholar
  16. 16.
    Crowell, A. D. J. Chem. Phys. 22 (1954) 1397.ADSGoogle Scholar
  17. 17.
    Lander, J. J. and Morrison, J. J. Chem. Phys. 37 (1962) 729.ADSGoogle Scholar
  18. 18.
    Hansen, N. R. and Haneman, D. Surf. Sci. 2 (1964) 566 see also Taloni, A. and Haneman, D. Surf. Sci. 10 (1968) for an SPP calculation of these relaxations.ADSCrossRefGoogle Scholar
  19. 19.
    MacRae, A. U. and Germer, L. H. Phys. Rev. Lett. 8 (1962) 489.ADSCrossRefGoogle Scholar
  20. 20.
    Park, R. L. and Famsworth, H. E. Surf. Sei. 2 (1964) 527.ADSCrossRefGoogle Scholar
  21. 21.
    Jackson, D. P. Can. J. Phys. 49 (1971) 2093.Google Scholar
  22. 22.
    Wynblatt, P. and Gjostein, N. A. Surf. Sci. 12 (1968) 109.ADSCrossRefGoogle Scholar
  23. 23.
    Cotterill, R.M.J, and Doyama, M. Lattice Defects and Their Interactions, New York (1967) 1.Google Scholar
  24. 24.
    Burton, J. J. and Jura, G. J. Phys. Chem. 71 (1967) 1937.CrossRefGoogle Scholar
  25. 25.
    MacRae, A. U. Surf. Sci. 13 (1969) 130.MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Davies, J. A. J. Vac. Sci. and Tech. 8 (1971) 487.ADSCrossRefGoogle Scholar
  27. 27.
    Note added in proof: Private communications with Dr. J. J. Burton have cleared up this disagreement, which was indeed due to factor problems. The relaxations given here and in Ref. 21 are presumably correct.Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • D. P. Jackson
    • 1
  1. 1.Chemistry and Materials DivisionAtomic Energy of Canada LimitedChalk RiverCanada

Personalised recommendations