The Motion of Screw Dislocations in a Model B.C.C. Sodium Lattice

  • Z. S. Basinski
  • M. S. Duesbery
  • R. Taylor


The behavior of the screw dislocation core in the presence of an external uniaxial stress of varying sense and orientation has been examined for a bcc model lattice, using an effective ion-ion potential for sodium developed from first principles. The Peierls stress is strongly orientation-dependent, and has a minimum value of 0.0076G, where G is the shear modulus. The mechanism for dislocation movement can be planar or nonplanar, depending on the orientation of the applied stress, and can give rise to crystallographic slip on {110| or {112| planes or to noncrystallo-graphic slip.


Screw Dislocation Uniaxial Stress Critical Shear Stress Dislocation Core Orientation Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dislocation Dynamics, e.g., 1968, eds, A. R. Rosenfield, G. T. Hahn, A. L. Bernent and R. I. Jaffee (McGraw-Hill).Google Scholar
  2. 2.
    J. W. Christian and V. Vitek, 1971.Google Scholar
  3. 3.
    R. Chang, 1967, Phil. Mag., 19, 501.Google Scholar
  4. 4.
    R. Bullough and R.C. Perrin, 1968, Dislocation Dynamics (McGraw-Hill).Google Scholar
  5. 5.
    P. C. Gehlen, G. T. Hahn and A. R. Rosenfield, 1969, Conference on Fundamental Aspects of Dislocation Theory, (N.B.S., Washington, D.C.)Google Scholar
  6. 6.
    V. Vitek, R. C. Perrin and D. K. Bowen, 1970, Phil. Mag., 21, 1049.ADSCrossRefGoogle Scholar
  7. 7.
    Z. S. Basinski, M. S. Duesbery and R. Taylor, 1970, Phil. Mag., 21, 1201.ADSCrossRefGoogle Scholar
  8. 8.
    Z. S. Basinski, M. S. Duesbery and R. Taylor, this conference.Google Scholar
  9. 9.
    P. B. Hirsch, 1960, Fifth International Congress of Crystallography, Cambridge, U.K.Google Scholar
  10. 10.
    Z. S. Basinski, M. S. Duesbery and R. Taylor, 1971, Can. J. Phys., in the press.Google Scholar
  11. 11.
    Z.S. Basinski, M. S. Duesbery, A. Pogany, R. Taylor and Y. P. Varshni, 1970, Can. J. Phys., 48, 1480.ADSCrossRefGoogle Scholar
  12. 12.
    Z. S. Basinski, M. S. Duesbery and R. Taylor, 1970, Second International Conference on the Strength of Metals and Alloys (Am. Soc. for Metals).Google Scholar
  13. 13.
    M. S. Duesbery, 1969, Phil. Mag., 19, 501.ADSCrossRefGoogle Scholar
  14. 14.
    V. Vitek and F. Kroupa, 1966, Phys. Stat. Sol., 18, 703.ADSCrossRefGoogle Scholar
  15. 15.
    V. Vitek, 1967, Phys. Stat. Sol., 18, 687.ADSGoogle Scholar
  16. 16.
    V. Vitek, 1967, Phys. Stat. Sol., 22, 453.ADSCrossRefGoogle Scholar
  17. 17.
    M. S. Duesbery and P. B. Hirsch, 1968, Dislocation Dynamics (McGraw-Hill).Google Scholar
  18. 1.
    See Ref. 6.Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Z. S. Basinski
    • 1
  • M. S. Duesbery
    • 1
  • R. Taylor
    • 1
  1. 1.Division of PhysicsNational Research Council of CanadaOttawa 7Canada

Personalised recommendations