On the Factors Controlling the Structure of Dislocation Cores in B.C.C. Crystals

  • V. Vitek
  • L. Lejček
  • D. K. Bowen


It is argued that the restoring forces acting between two parts of a crystal displaced along a plane comprise the main influence upon the structure of a planar dislocation core. This hypothesis has been investigated using a Peierls-type model in which the sinusoidal restoring force law was replaced by force laws calculated using three different interatomic potentials. The structure of an a/2<111> edge dislocation on a {112| plane was calculated in detail using this model and compared with a computer simulation of the dislocation inside a finite crystallite. The cores were in both cases described as a continuous distribution of partial dislocations of density ρ x (x) the shape of which is the same for both types of calculations. The physical meaning of maxima, minima, and inflexions in ρ x , their relation to the restoring forces, and their interpretation in terms of generalized splitting are discussed.


Burger Vector Core Structure Edge Dislocation Crystallographic Plane Partial Dislocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cotterill, R.M.J., and Doyama, M.: Phys. Rev., 145: 465 (1966).ADSCrossRefGoogle Scholar
  2. 2.
    Doyama, M., and Cotterill, R.M.J.: Phys. Rev., 150: 448 (1966).ADSCrossRefGoogle Scholar
  3. 3.
    Basinski, Z. S., Duesbery, M. S., and Taylor, R.: Phil. Mag., 21: 1201 (1970).ADSCrossRefGoogle Scholar
  4. 4.
    Vitek, V., Perrin, R. C., and Bowen, D. K.: Phil. Mag., 21: 1049 (1970).ADSCrossRefGoogle Scholar
  5. 5.
    Gehlen, P. C.: J. Appl. Phys., 41: 5165 (1970).ADSCrossRefGoogle Scholar
  6. 6.
    Kroupa, F., and Vitek, V.: Can. J. Phys., 45: 945 (1967).ADSCrossRefGoogle Scholar
  7. 7.
    Vitek, V.: Phil. Mag., 18: 773 (1968).ADSCrossRefGoogle Scholar
  8. 8.
    Vitek, V.: Phil. Mag., 21: 1275 (1970).ADSCrossRefGoogle Scholar
  9. 9.
    Peierls, R.: Proc. Phys. Soc, 52: 34 (1940).ADSCrossRefGoogle Scholar
  10. 10.
    Basinski, Z. S., Duesbery, M. S., Pogany, A. P., Taylor, R., and Varshni, Y.P.: Can. J. Phys., 48: 1480 (1970kADSCrossRefGoogle Scholar
  11. 11.
    Johnson, R. A.: Phys. Rev. A., 134: 1329 (1964).ADSGoogle Scholar
  12. 12.
    Vitek, V., and Kroupa, F.: Phil. Mag., 19: 265 (1969).ADSCrossRefGoogle Scholar
  13. 13.
    Nabarro, F.R.N.: Proc. Phys. Soc, 59: 256 (1947).ADSCrossRefGoogle Scholar
  14. 14.
    Leibfried, G., and Lücke, K.: Z. Phys., 126: 450 (1949).ADSMATHCrossRefGoogle Scholar
  15. 1.
    Bullough, R., and Perrin, R. C., Dislocation Dynamics, eds. A. R. Rosenfield, G. T. Hahn, A. L. Bernent and R. I. Jaffee (McGraw-Hill, New York, 1968), p. 175.Google Scholar
  16. 2.
    Gehlen, P. C., Rosenfield, A. R., and Hahn, G. T.: J. Appl. Phys., 39, 5246 (1968).ADSCrossRefGoogle Scholar
  17. 3.
    van der Merwe, J. H.: Proc. Phys. Soc. (London), 63, 616 (1950).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • V. Vitek
    • 1
  • L. Lejček
    • 2
  • D. K. Bowen
    • 3
  1. 1.Department of MetallurgyUniversity of OxfordOxfordEngland
  2. 2.Institute of PhysicsCzechoslovak Academy of SciencesPragueCzechoslovakia
  3. 3.School of Engineering ScienceUniversity of WarwickCoventryEngland

Personalised recommendations