Temperature Dependence of the Vacancy Formation Energy in Krypton by Molecular Dynamics

  • R. M. J. Cotterill
  • L. B. Pedersen


A molecular dynamics study of the lattice vacancy in krypton shows that the formation energy of this defect decreases by about 20 percent with increasing temperature, in the range 0 to 96 K.


Formation Energy Perfect Crystal Vacancy Formation Versus ACANCY Vacancy Formation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. P. Flynn: Zeits. für Naturforschung, 26, 99 (1971).ADSGoogle Scholar
  2. 2.
    J. Friedel in Vacancies and Interstitials in Metals, ed. A. Seeger et al. (North-Holland, 1970) p 787.Google Scholar
  3. 3.
    A. Seeger and H. Mehrer, p 1 in Ref. 2.Google Scholar
  4. 4.
    J. Frenkel: Kinetic Theory of Liquids (Dover, 1955) p 14.Google Scholar
  5. 5.
    M. Doyama and R.M.J. Cotterill in Lattice Defects and Their Interactions, ed. R. R. Hasiguti (Gordon & Breach, New York, 1967) p 79.Google Scholar
  6. 6.
    Tabulated values are given in A. C. Damask and G. J. Dienes, Point Defects in Metals (Gordon and Breach, New York, 1963)Google Scholar
  7. 6.
    Tabulated values are given in A. C. Damask and G. J. Dienes Lattice Defects in Quenched Metals, ed. R.M.J. Cotterill et al. (Academic Press, 1965); and in Ref. 2.Google Scholar
  8. 7.
    H. R. Glyde: J. Phys. Chem. Solids, 27 1659 (1966).ADSCrossRefGoogle Scholar
  9. 8.
    B. J. Aider and T. Wainwright: J. Chem. Phys., 31, 459 (1959).MathSciNetADSCrossRefGoogle Scholar
  10. 9.
    J. B. Gibson, A. N. Goland, M. Milgram and G. H. Vineyard: Phys. Rev., 120, 1229 (1960).ADSCrossRefGoogle Scholar
  11. 10.
    A. Rahman: Phys. Rev., 136, A405 (1964).ADSCrossRefGoogle Scholar
  12. 11.
    L. Verlet: Phys. Rev., 159, 98 (1967).ADSCrossRefGoogle Scholar
  13. 12.
    U A. Girifalco and V. G. Weizer: Phys. Rev., 114, 687 (1959).ADSCrossRefGoogle Scholar
  14. 13.
    R. H. Beaumont, H. Chinara and J. A. Morrison: Proc. Phys. Soc. (London) 78, 1462 (1961).ADSCrossRefGoogle Scholar
  15. 14.
    D. N. Batchelder, D. L. Losee and R. O. Simmons: J. Phys. Chem. Sol., Suppl. L. 10, 843 (1967).Google Scholar
  16. 15.
    J. L. Lebowitz, J. K. Percus and L. Verlet: Phys. Rev. 153, 250 (1967).ADSCrossRefGoogle Scholar
  17. 16.
    Tabulated values are given in E. R. Dobbs and K. Luszczynski, Proc. Internat. Conf. Low Temp. Phys., Paris, 1955, pp. 439–440.Google Scholar
  18. 16.
    G. H. Cheesman and C. M. Soane, Proc. Phys. Soc. (London), 70B, 700 (1957).ADSGoogle Scholar
  19. 16.
    B. F. Figgins and B. L. Smith, Phil Mag. 5, 186 (1960).ADSCrossRefGoogle Scholar
  20. 17.
    D. L. Losee and R. O. Simmons, Phys. Rev. Letters 18, 451 (1967).ADSCrossRefGoogle Scholar
  21. 18.
    C. Zener Imperfections in Nearly Perfect Crystals, eds. W. Shockley, J. H. Hollomon, R. Maurer and F. Seitz (J. Wiley and Sons, Inc., New York, 1952).Google Scholar
  22. 1.
    K. Fischer, Z. Phys. 155, 59 (1959).ADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • R. M. J. Cotterill
    • 1
  • L. B. Pedersen
    • 1
  1. 1.Dept. of Structural Properties of MaterialsThe Technical University of DenmarkLyngbyDenmark

Personalised recommendations