Using models for fcc and bee metals developed in an earlier paper, the properties of He interstitial and substitutional defects were studied. The He-metal potentials were obtained by a modification of the Wedepohl method. Interstitial activation energies for helium motion are found in general to be quite low, being of the order of 0.5 eV for fcc materials and 0.25 eV for the bcc cases with the exception of palladium (~ 1.7 eV). Substitutional detrapping is found to require an activation energy of from ~2–5 eV, the higher energies found mostly for the bcc materials.


Helium Atom Interatomic Potential Interstitial Position Helium Motion Defect Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. S. Nelson, D. J. Mazey and J. A. Hudson, J. Nucl. Mat. 37, 1 (1970).ADSCrossRefGoogle Scholar
  2. 2.
    W. Bauer and W. D. Wilson, He Migration in Metals, Proceedings of the 1971 International Conference on Radiation Induced Voids in Metals (Albany, New York, June 9–11, 1971).Google Scholar
  3. 3.
    J. B. Holt, W. Bauer and G. J. Thomas, Radiation Effects, 7, 269 (1971).ADSCrossRefGoogle Scholar
  4. 4.
    G. J. Thomas, W. Bauer and J. B. Holt, Radiation Effects (to be published, March 1971).Google Scholar
  5. 5.
    D. E. Rimmer and A. H. Cottrell, Phil. Mag. 2, 1345 (1957).ADSCrossRefGoogle Scholar
  6. 6.
    A. Anderman and W. G. Gehman, Phys. Stat. Sol.80, 283 (1968).ADSGoogle Scholar
  7. 7.
    W. D. Wilson and C. L. Bisson, Phys. Rev. (to be published, June 1971).Google Scholar
  8. 8.
    P. T. Wedepohl, Proc. Phys. Soc. 92, 79 (1967).ADSCrossRefGoogle Scholar
  9. 9.
    J. B. Gibson, A. N. Goland, M. Milgram and G. H. Vineyard, Phys. Rev. 120, 1229 (1960).ADSCrossRefGoogle Scholar


  1. 1.
    P. Gombas, Handbuch, d. Phys., Vol. 36 (Springer Verlag, Berlin, 1956) p. 109.Google Scholar
  2. 2.
    See Ref. 8 in text.Google Scholar
  3. 3.
    K. Günther, Ann. Physik (7) 14, 296 (1964),MATHCrossRefGoogle Scholar
  4. 3a.
    K. Günther, Kernergie, 7, 443 (1964).Google Scholar
  5. 4.
    A. A. Abrahamson, Phys. Rev. 123, 538 (1961);MathSciNetADSCrossRefGoogle Scholar
  6. 4a.
    A. A. Abrahamson, Phys. Rev. 130, 693 (1963);ADSCrossRefGoogle Scholar
  7. 4b.
    A. A. Abrahamson, Phys. Rev. 133, A990 (1964).ADSCrossRefGoogle Scholar
  8. 5.
    See Ref. 4 in text.Google Scholar
  9. 6.
    See Ref. 3 in text.Google Scholar
  10. 7.
    See Ref. 5 in text.Google Scholar
  11. 8.
    E. V. Kornelsen, Proceedings of the 1971 International Conference on Solid Surfaces, Boston; Mass., Oct. 11–15, 1971, to be published in J. Vac. Sci. Tech.Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • W. D. Wilson
    • 1
  • R. A. Johnson
    • 2
  1. 1.Sandia LaboratoriesLivermoreUSA
  2. 2.University of VirginiaCharlottesvilleUSA

Personalised recommendations