Advertisement

Pseudopotential Calculation of Point Defect Properties in Simple Metals

  • P. S. Ho

Abstract

This paper shows a point-defect calculation formulated completely within the framework of the pseudopotential theory. From the functional form of the total energy of the perfect lattice, the explicit expressions for the formation energy and formation volume of a vacancy have been derived. It is shown how the volume-dependent part of the lattice energy can be taken into account in defect calculation. This energy is found to have significant effect on the vacancy properties. To calculate the relaxed configuration around the vacancy, the method of lattice statics was reformulated in the context of pseudopotential theory. The present method was applied to calculate the vacancy-formation energy and formation volume for alkali metals and aluminum, and the results are reported.

Keywords

Alkali Metal Formation Energy Formation Volume Lattice Energy Interatomic Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, for example, Johnson, R. A. and Brown, E., Phys. Rev. 127, 446 (1962)ADSCrossRefGoogle Scholar
  2. 1a.
    and Johnson, R. A., Phys. Rev. 145, 423 (1966).ADSCrossRefGoogle Scholar
  3. 2.
    Lie, K. C. and Koehler, J. S., Adv. in Phys. 20, 421 (1969).Google Scholar
  4. 3.
    Harrison, W. A., Pseudopotentials in the Theory of Metals, Chp. 2, W. A. Benjamin, Inc., New York, 1966.Google Scholar
  5. 4.
    Pines, D. and Nozieres, P., The Theory of Quantum Liquids, Vol. 1, Chp. 5, W. A. Benjamin, Inc., New York, 1966.Google Scholar
  6. 5.
    Fuchs, K., Proc. Roy. Soc. (London) A151, 585 (1935).ADSGoogle Scholar
  7. 6.
    Shaw, R. W., J. Phys. C. (Solid St. Phys.) 2, 2335 (1969).ADSCrossRefGoogle Scholar
  8. 7.
    Section 6.4 in Ref. 3.Google Scholar
  9. 8.
    Ho, P. S., Phys. Rev. B3, 4035 (1971).ADSGoogle Scholar
  10. 9.
    Kanzaki, H., J. Phys. Chem. Solids 2, 24 (1957).MathSciNetADSCrossRefGoogle Scholar
  11. 10.
    Flinn, P. A. and Maradudin, A. A., Annals of Phys. 18, 81 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  12. 11.
    Hubbard, J., Proc. Roy. Soc. (London) A193, 299 (1958);Google Scholar
  13. 11a.
    Sham, L. J., Proc. Roy. Soc. (London) A283, 33 (1965).ADSGoogle Scholar
  14. 12.
    Shaw, R. W., J. Phys. C. (Solid St. Phys.) 3, 1140 (1970).ADSCrossRefGoogle Scholar
  15. 13.
    Ho, P. S., Phys. Rev. 169, 523 (1968).ADSCrossRefGoogle Scholar
  16. 14.
    Heine, V. and Weaire, D., Pseudopotential Theory of Cohesion and Structure in Solid State Phys. Vol. 24, Academic Press, New York, 1970.Google Scholar
  17. 15.
    Shaw, R. W. and R. Pynn, J. Phys. C. (Solid St. Phys.) 2, 2071 (1969).ADSCrossRefGoogle Scholar
  18. 1.
    See Harrison, W. A., Pseudopotentials in the Theory of Metals, Chp. 2, W. A. Benjamin, Inc., New York, 1966.Google Scholar
  19. 2.
    Ashcroft, N. W. and Langreth, D. C. Phys. Rev. 159, 500 (1967).ADSCrossRefGoogle Scholar
  20. 3.
    Torrens, I. M. and Gerl, M. Phys. Rev. 187, 912 (1969).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • P. S. Ho
    • 1
  1. 1.Cornell UniversityIthacaUSA

Personalised recommendations