The Study of Interatomic Potentials by Planar Channeling Experiments

  • Mark T. Robinson


A model is described which permits experimental data on the energy losses of ions transmitted through planar channels in thin monocrystalline targets to be used to study interatomic potentials in the separation region near 1 A. The method depends upon the empirical observation that the rate of energy loss of such ions is a linear function of their transverse oscillation frequency in traversing the channel. The techniques are illustrated by application to some recent data on the channeling of several ions in gold, silver, and silicon.


Energy Loss Angular Distribution Channel Center Interatomic Potential Lattice Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For general reviews, see Datz, S., C. Erginsoy, G. Leibfried, and H. O. Lutz: Ann. Rev. Nuclear Sci. 17: 129 (1967)ADSCrossRefGoogle Scholar
  2. 1a.
    Mayer, J. W., L. Eriksson, and J. A. Davies: Ion Implantation in Semiconductors, Academic Press, New York, 1970.Google Scholar
  3. 2.
    Robinson, M. T., and O. S. Oen: Appl. Phys. Letters 2: 30 (1963);ADSCrossRefGoogle Scholar
  4. 2a.
    Robinson, M. T., and O. S. Oen: Phys. Rev. 132: 2385 (1963).ADSCrossRefGoogle Scholar
  5. 3.
    Datz, S., C. D. Moak, T. S. Noggle, B. R. Appleton, and H. O. Lutz: Phys. Rev. 179: 315 (1969).ADSCrossRefGoogle Scholar
  6. 4.
    Eisen, F. H., and M. T. Robinson: Phys. Rev. B 4: 1457 (1971).ADSCrossRefGoogle Scholar
  7. 5.
    Robinson, M. T.: Phys. Rev. 179: 327 (1969).ADSCrossRefGoogle Scholar
  8. 6.
    Lutz, H. O., S. Datz, C. D. Moak, and T. S. Noggle: Phys. Rev. Letters 17: 285 (1966).ADSCrossRefGoogle Scholar
  9. 7.
    Gibson, W. M., J. B. Rasmussen, P. Ambrosius-Olesen, and C. J. Andreen: Can. J. Phys. 46: 551 (1968).ADSCrossRefGoogle Scholar
  10. 8.
    Datz, S., C. D. Moak, B. R. Appleton, M. T. Robinson, and O. S. Oen: Atomic Collision Phenomena in Solids, D. W. Palmer, M. W. Thompson, and P. D. Townsend (eds.), p. 374, North-Holland, Amsterdam, 1970.Google Scholar
  11. 9.
    Appleton, B. R., S. Datz, C. D. Moak, and M. T. Robinson: Phys. Rev. B 4: 1452 (1971).ADSCrossRefGoogle Scholar
  12. 10.
    Appleton, B. R., S. Datz, C. D. Moak, and M. T. Robinson: unpublished data.Google Scholar
  13. 11.
    Robinson, M. T.: Phys. Rev. B 4: 1461 (1971).ADSCrossRefGoogle Scholar
  14. 12.
    Carlson, T. A., C. C. Lu, T. C. Tucker, C. W. Nestor, and F. B. Malik: U.S.A.E.C. Report ORNL-4614, 1970.Google Scholar
  15. 13.
    Gombas, P.: Handbuch der Physik, S. Flügge (ed.), Vol. 36, p. 109, Springer-Verlag, Berlin, 1956.Google Scholar
  16. 14.
    Moliere, G.: Z. Naturforsch. 2a: 133 (1947).ADSGoogle Scholar
  17. 15.
    Martin, F. W., B. R. Appleton, L. B. Bridwell, M. D. Brown, S. Datz, and C. D. Moak: to be published.Google Scholar
  18. 16.
    Moak, C. D., H. O. Lutz, L. B. Bridwell, L. C. Northcliffe, and S. Datz: Phys. Rev. 176: 427 (1968).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Mark T. Robinson
    • 1
  1. 1.Solid State DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations