Derivation of Long-Range Interaction Energies from Diffuse Scattering in Diffraction Patterns

  • J. M. Cowley
  • S. Wilkins

Abstract

Ordering theories for binary alloys valid above the critical temperature provide a relationship between the intensities of the diffuse scattering in X-ray, neutron or electron diffraction patterns and the Fourier transform of the pair-wise interaction energy function. Available diffraction data has been used to derive information on the form of the long-range oscillatory potentials attributable to conduction-electron energy terms. On this basis, the relationship of the diffuse scattering to the form of the Fermi surface is discussed. Consideration is given to the possibility of detecting and analyzing the effects of nonpair-wise interaction energies from diffraction data.

Keywords

Palladium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilkins, Stephen (1970) Phys. Rev. B, 2, 3935.ADSCrossRefGoogle Scholar
  2. 2.
    Moss, S. C. (1964) J. Appl. Phys. 35, 3547.ADSCrossRefGoogle Scholar
  3. 3.
    Kohn, W. and Vosko, S. H. (1960) Phys. Rev. 119, 912.ADSCrossRefGoogle Scholar
  4. 4.
    Lin, Wen, Spruiell, J. E., and Williams, R. O. (1970). J. Appl. Cryst. 3, 297.CrossRefGoogle Scholar
  5. 5.
    Brunei, M. and de Bergevin, F. (1969) J. Phys. Chem. Solids 30, 2011.ADSCrossRefGoogle Scholar
  6. 6.
    Allpress, J. G. (1971) to be published in J. Mat. Sci.Google Scholar
  7. 7.
    Blandin A. and Deplanté, J. L. (1963) in Metallic Solid Solutions, edited by J. Friedel and A. Guinier (Benjamin, New York).Google Scholar
  8. 8.
    Harrison, R. J. and Paskin, A. (1963) in Metallic Solid Solutions, edited by J. Friedel and A. Guinier (Benjamin, New York).Google Scholar
  9. 9.
    Roaf, D. J. (1962) Phil. Trans. Roy. Soc. (London), Ser. A 255, 85ADSCrossRefGoogle Scholar
  10. 9a.
    Kupratakuln, S. (1970) J. Phys. C Supplement, 3, S109.ADSGoogle Scholar
  11. 10.
    Roth, L. M., Zeiger, H. J., and Kaplan, T. A. (1966) Phys. Rev. 149, 519.ADSCrossRefGoogle Scholar
  12. 11.
    Moss, S. C. (1969) Phys. Rev. 22, 1108.ADSGoogle Scholar
  13. 12.
    Krivoglaz, M. A. and Hao, T’u in Defects and Properties of the Crystal Lattice (Izd. Naukova dumka, Kiev, 1968).Google Scholar
  14. 13.
    Sato, H. and Toth, R. S. (1961) Phys. Rev. 124, 1833 and (1962) 127, 469.ADSCrossRefGoogle Scholar
  15. 14.
    Clapp, P. C. (1969) Technical Report Number 210, Ledgemont Laboratory, Lexington, Mass.Google Scholar
  16. 15.
    Shirley, C. G. and Wilkins, Stephen, in press.Google Scholar
  17. 16.
    Cowley, J. M. and Murray, R. J. (1968) Acta Cryst. A24, 329.Google Scholar
  18. 17.
    Cowley, J. M. (1969) Acta Cryst. A24, 557.Google Scholar
  19. 18.
    Clapp, P. C. (1969) J. Phys. Chem. Solids 30, 2589.ADSCrossRefGoogle Scholar
  20. 19.
    Cohen, J. B. and Gragg, J. “Battelle Colloquium on Critical Phenomena” (1970).Google Scholar
  21. 1.
    Mann, E. Phys. stat. sol. 13, 293 (1966).ADSCrossRefGoogle Scholar
  22. 2.
    Moss, S. C. Phys. Rev. Lett. 22, 1108 (1969).ADSCrossRefGoogle Scholar
  23. 3.
    Hashimoto, S. and S. Ogawa, J. Phys. Soc. Japan 29, 710 (1970).ADSCrossRefGoogle Scholar
  24. 4.
    Cowley, J. M. Acta Cryst. A25, 129 (1969).Google Scholar
  25. 5.
    See Cowley, J. M. and Murray, R. J. (1968) Acta Cryst. A24, 329.Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • J. M. Cowley
    • 1
  • S. Wilkins
    • 1
  1. 1.Department of PhysicsArizona State UniversityTempeUSA

Personalised recommendations