Experimental Techniques Used to Obtain Potentials

  • J. E. Enderby
  • W. S. Howells


The electrons in a metal or alloy may be divided into two types: the core electrons which are tightly bound within the atom and the conduction electrons which are relatively loosely bound and which are responsible for most of the characteristic properties of the metallic state. The aim of the pseudopotential method is to transform the equation
$$[T + V(r)]{\psi _k} = {E_k}{\psi _k}$$
$$H{\phi _k} = {E_k}{\phi _k}$$
where T is the kinetic energy operator, V the (Hartree) potential, and ø k is a smooth wave function that has none of the violent oscillations close to the nucleus which characterize ψ k , the set of conduction electron wave functions. It turns out that this transformation may be accomplished provided the new operator is written H = T + W(r, k) where W(r, k) is a pseudopotential.


Hard Sphere Radial Distribution Function Pair Potential Interatomic Potential Liquid Lead 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harrison, W. A., Pseudopotentials in the Theory of Metals (New York: Benjamin, 1966).Google Scholar
  2. 2.
    Ashcroft, N. W., Phys. Letts., 23, 529 (1966).ADSGoogle Scholar
  3. 3.
    Shaw, R. W., J. Phys. C., 2, 2335 (1969).ADSCrossRefGoogle Scholar
  4. 4.
    Enderby, J. E., Advances in Structure Research by Diffraction Methods, 4 (in press).Google Scholar
  5. 5.
    Enderby, J. E., North, D. M., and Egelstaff, P. A., Phil. Mag., 14, 961 (1966).ADSCrossRefGoogle Scholar
  6. 6.
    Howells, W. S., Howe, A., Enderby, J. E., and Gehlen, P. C., to be published.Google Scholar
  7. 7.
    Enderby, J. E., and March, N., H., Adv. Phys., 14, 453 (1965).ADSCrossRefGoogle Scholar
  8. 8.
    Gehlen, P. C., and Enderby, J. E., J. Chem. Phys., 51, 547 (1969).ADSCrossRefGoogle Scholar
  9. 9.
    Egelstaff, P. A., Thermal Neutron Scattering (New York: Academic Press, 1965).Google Scholar
  10. 10.
    Leigh, FL S., Sizigeti, B., and Tewary, V. K., Proc. Roy. Soc., A, 320, 505–526 (1971).ADSCrossRefGoogle Scholar
  11. 11.
    Koehler, T. R., Gillis, N. S., and Wallace, D. C., Phys. Rev., B1, 4521 (1970).ADSGoogle Scholar
  12. 12.
    Stedman, R., Almquist, L., and Nilsson, G., Phys. Rev., 162, 549 (1967).ADSCrossRefGoogle Scholar
  13. 13.
    Cohen, M. L., and Heine, V., Solid State Phys., 24, 38 (1970).Google Scholar
  14. 14.
    Page, D. I., Egelstaff, P. A., Enderby, J. E., and Wingfield, B. F., Phys. Letts., 29A, 296 (1969).ADSCrossRefGoogle Scholar
  15. 1.
    R. C. Brown, J. Worster, N. H. March, R. C. Perrin and R. Bullough, Phil. Mag. 23, 555 (1971).ADSCrossRefGoogle Scholar
  16. 2.
    M. D. Johnson, P. Hutchinson and N. H. March, Proc. Roy. Soc. (London) 282A, 283 (1964).ADSGoogle Scholar
  17. 3.
    W. Shyu and G. D. Gaspari, Phys. Lett., 30A, 53 (1969).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • J. E. Enderby
    • 1
  • W. S. Howells
    • 1
  1. 1.University of LeicesterLeicesterEngland

Personalised recommendations