The Chemical Basis for Climate Change

  • Stephen H. Schneider
  • William W. Kellogg


It is obvious that the climate of the planet earth has undergone many rather drastic changes in the past, and there is every reason to believe that there will be other changes in the future. The question is not whether our climate will change, but rather: What causes it to change? If we knew the answer, perhaps we would be able to foresee the future climates in store for us.


Infrared Radiation Lower Atmosphere Chemical Basis Radiation Balance Aerosol Optical Thickness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kellogg, W. W., Predicting the climate, in “Man’s Impact on the Climate,” W. H. Matthews, W. W. Kellogg, and G. D. Robinson, eds., MIT Press, Cambridge, Mass., 1971, Chapter 4.Google Scholar
  2. 2.
    Study of Critical Environmental Problems (SCEP), “Man’s Impact on the Global Environment,” MIT Press, Cambridge, Mass., 1970.Google Scholar
  3. 3.
    Study of Man’s Impact on Climate (SMIC), “Inadvertent Climate Modification,” MIT Press, Cambridge, Mass., 1971.Google Scholar
  4. 4.
    Matthews; W. H., Kellogg, W. W., and Robinson, G. D. (ed.), “Man’s Impact on the Climate,” MIT Press, Cambridge, Mass., 1971.Google Scholar
  5. 5.
    Dansgaard, W., Johnsen, S. J., Clausen, H. B., and Langway, C. C., in “The Late Cenozoic Glacial Ages,” symposium edited by K. K. Turekian, Yale Univ. Press, New Haven, Conn., 1971.Google Scholar
  6. 6.
    Flohn, H., Geologische Rundschae 54, 504–575 (1964).CrossRefGoogle Scholar
  7. 7.
    Lamb, H. H., “The Changing Climate,” Methuen, London, 1966.Google Scholar
  8. 8.
    Mitchell, J. M., Jr., Summary of the problem of air pollution effects on the climate, in “Man’s Impact on the Climate,” W. H. Matthews, W. W. Kellogg, and G. D. Robinson, eds., MIT Press, Cambridge, Mass., 1971, Chapter 8.Google Scholar
  9. 9.
    Lorenz, E. N., Climatic change as a mathematical problem, J. Appi. Meteorology 9, 325– 329 (1970); reprinted as Chapter 9 in “Man’s Impact on the Climate,” W. H. Matthews, W. W. Kellogg, and G. D. Robinson, ed., MIT Press, Cambridge, Mass., 1971.Google Scholar
  10. 10.
    Robinson, G. D., Some meteorological aspects of radiation and radiation measurement, in “Advances in Geophysics,” H. E. Landberg, and J. Van Miegham, eds., Academic Press, London, 1970.Google Scholar
  11. 11.
    Robinson, N., “Solar Radiation,” Elsevier, Amsterdam, 1966, Chapter 3.Google Scholar
  12. 12.
    Vonder Haar, T. H., and Suomi, V. E., Measurements of the earth’s radiation budget from satellites during a five-year period, J. Atmos. Sci. 28, 305–314 (1971).CrossRefGoogle Scholar
  13. 13.
    London, J., and Sasamori, T., Radiative energy budget of the atmosphere, Space Research XI, 639–649 (1970); reprinted as Chapter 6 in “Man’s Impact on Climate,” H. Matthews, W. W. Kellogg, and G. D. Robinson, eds., MIT Press, Cambridge, Mass., 1971.Google Scholar
  14. 14.
    Winston, J. S., The annual course of zonal mean albedo as derived from ESSA 3 and 5 digitized picture data, Monthly Weather Review 99, 818–827 (1971).CrossRefGoogle Scholar
  15. 15.
    Goody, R. M., “Atmospheric Radiation,” Oxford Univ. Press, London, 1964.Google Scholar
  16. 16.
    Craig, R., “The Upper Atmosphere, Meteorology and Physics” Academic Press, New York and London, 1965.Google Scholar
  17. 17.
    Kondratyev, K. Ya., “Radiation in the Atmosphere,” Academic Press, New York and London, 1969.Google Scholar
  18. 18.
    Manabe, S., and Wetherald, R. T., Thermal equilibrium of the atmosphere with a given distribution of relative humidity, J. Atmos. Sci. 24, 241–259 (1967).CrossRefGoogle Scholar
  19. 19.
    Lorenz, E., “The Nature and Theory of the General Circulation of the Atmosphere,” World Meteorological Organization, Geneva, 1967.Google Scholar
  20. 20.
    Thompson, P. D., “Numerical Weather Analysis and Prediction,” New York, 1961, p. 118.Google Scholar
  21. 21.
    Budyko, M. I., “Climate and Life,” Hydrological Publishing House, Leningrad, 1971; also, The future climate, EOS, Trans. Am. Geophys. Union 53, 868–874 (1972).CrossRefGoogle Scholar
  22. 22.
    Neumann, G., and Pierson, W. J., Jr., “Principles of Physical Oceanography,” Prentice- Hall, Englewood Cliffs, New Jersey, 1966, Chapters 13 and 14.Google Scholar
  23. 23.
    Haitiner, G. J., “Numerical Weather Prediction,” Wiley, New York, 1971.Google Scholar
  24. 24.
    Hess, S., “Introduction to Theoretical Meteorology,” Holt, Rinehart, and Winston, New York, 1959.Google Scholar
  25. 25.
    Van de Hülst, H. C., “Light Scattering by Small Particles,” Wiley, New York, 1957.Google Scholar
  26. 26.
    Junge, C., “Atmospheric Chemistry and Radioactivity,” Academic Press, New York, 1963.Google Scholar
  27. 27.
    Rasool, S. I., and Schneider, S. H., Atmospheric carbon dioxide and aerosols: effects of large increases on the global climate, Science 173, 138–141 (1971).CrossRefGoogle Scholar
  28. 28.
    Atwater, M. A., Radiative effects of pollutants in the atmospheric boundary layer, J. Atmos. Sci. 28, 1367–1373 (1971).CrossRefGoogle Scholar
  29. 29.
    Schneider, S. H., A comment on climate: the influence of aerosols, J. Appi. Meteorology 10, 840–841 (1971).CrossRefGoogle Scholar
  30. 30.
    Budyko, M. I., The effect of solar radiation variations on the climate of the earth, Tellus 21,611–619(1969).Google Scholar
  31. 31.
    Yamamoto, G., and Tanaka, M., Increase in global albedo due to air pollution, J. Atmos. Sci. 29, 1405–1412 (1972).CrossRefGoogle Scholar
  32. 32.
    Hansen, J. E., and Pollack, J. B., Near-infrared light scattering by terrestrial clouds, J. Atmos. Sci. 27, 265–281 (1970).CrossRefGoogle Scholar
  33. 33.
    Charlson, R. J., Harrison, H., and Witt, G., Technical comment on Rasool and Schneider (1971), Science, 175, 95–96 (1972).CrossRefGoogle Scholar
  34. 34.
    Rasool, S. I., and Schneider, S. H., Reply to Charlson, Harrison, and Witt (1972), Science, 175, 96 (1972).Google Scholar
  35. 35.
    Mitchell, J. M., Jr., The effect of atmospheric aerosols on climate with special reference to temperature near the earth’s surface, J. Appl. Meteorology 10, 703–714 (1971).CrossRefGoogle Scholar
  36. 36.
    Twomey, S., The influence of atmospheric particles on cloud and planetary albedo, in the “Proceedings of the International Conference on Weather Modification, Canberra, Australia,” 265–266, American Meteorological Society, Boston, 1971.Google Scholar
  37. 37.
    Kondratyev, K. Ya., “Radiative Heat Exchange in the Atmosphere,” Pergamon Press, London, 1965, pp. 134–144.Google Scholar
  38. 38.
    Moller, F., On the influence of changes in C02 concentration in air on the radiative balance of the earth’s surface and on the climate, J. Geophys. Res. 68, 3877–3886 (1963).Google Scholar
  39. 39.
    Schneider, S. H., Cloudiness as a global climatic feedback mechanism: The effect on the radiation balance and surface temperature of variations in cloudiness, J. Atmos. Sci. 29, 1413–1422 (1972).CrossRefGoogle Scholar
  40. 40.
    Namias, J., Seasonal interactions between the north Pacific ocean and the atmosphere during the 1960’s, Monthly Weather Review 97, 173–192 (1969).CrossRefGoogle Scholar
  41. 41.
    Newell, R. E., Vincent, D. G., Dopplick, T. G., Ferruzza, D., and Kidson, J. W., The energy balance of the global atmosphere, in “The Global Circulation of the Atmosphere,” G. A. Corby, ed., Royal Meteorological Society, London, 1969, pp. 42–90.Google Scholar
  42. 42.
    Palmen, E., and Newton, C. W., “Atmospheric Circulation Systems,” Academic Press, New York and London, 1969.Google Scholar
  43. 43.
    Manabe, S., and Bryan, K., Climate calculations with a combined ocean-atmosphere model, J. Atmos. Sci. 26, 786–789 (1969).CrossRefGoogle Scholar
  44. 44.
    Sellers, W. D., A global climatic model based on the energy balance of the earth-atmosphere system, J. Appl. Meteorology 8, 392–400 (1969).CrossRefGoogle Scholar
  45. 45.
    Sellers, W. D., “Physical Climatology,” The University of Chicago Press, Chicago, 1965.Google Scholar
  46. 46.
    Rasool, S. I., and Prabhakara, C., Heat budget of the Southern Hemisphere, “Problems of Atmospheric Circulation,” R. V. Garcia and T. F. Malone, eds., Spartan Books, New York, 1966, pp. 76–92.Google Scholar
  47. 47.
    Kurihara, Y., A statistical-dynamical model of the general circulation of the atmosphere, J. Atmos. Sci. 27, 847–870 (1970).CrossRefGoogle Scholar
  48. 48.
    Saltzman, B., and Vernikar, A. D., An equilibrium solution for the axially symmetric component of the earth’s macroclimate, J. Geophys. Res. 76, 1498–1524 (1971).CrossRefGoogle Scholar
  49. 49.
    Dickinson, R. E., Analytic model for zonal winds in the tropics, Monthly Weather Review 99, 501–523 (1971).CrossRefGoogle Scholar
  50. 50.
    Kasahara, A., and Washington, W. M., General circulation experiments with a six-layer NCAR model, including orography, cloudiness and surface temperature calculations, J. Atmos. Sci. 28, 657–701 (1971).CrossRefGoogle Scholar
  51. 51.
    Manabe, S., Smagorinsky, J., and Strickler, R. F., Simulated climatology of a general circulation model with a hydrological cycle, Monthly Weather Review 93, 769–798 (1965).CrossRefGoogle Scholar
  52. 52.
    Mintz, Y., Very long term global integration of the primitive equation of atmospheric motion, “WMO-IUGG Symposium on Research and Development of Long Range Forecasting, Geneva,” WMO Technical Note 66, 1965, pp. 141–161.Google Scholar
  53. 53.
    Smagorinsky, J., General circulation experiments with primitive equations, 1, The basic experiment, Monthly Weather Review 93, 265–276 (1963).Google Scholar
  54. 54.
    Martell, E. A., Residence times and other factors influencing pollution of the upper atmosphere, in “Man’s Impact on the Climate,” W. H. Matthews, W. W. Kellogg, and G. D. Robinson, eds., MIT Press, Cambridge, Mass., 1971, Chapter 35.Google Scholar
  55. 55.
    Junge, C. E., The nature and residence times of tropospheric aerosols, in “Man’s Impact on the Climate,” W. H. Matthews, W. W. Kellogg, and G. D. Robinson, eds., MIT Press, Cambridge, Mass, 1971, Chapter 23.Google Scholar
  56. 56.
    Gillette, D. A., and Blifford, I. H., Jr., Composition of tropospheric aerosols as a function of altitude, J. Atmos. Sci. 28, 1199–1210 (1971).CrossRefGoogle Scholar
  57. 57.
    Ludwig, J. H., Morgan, G. B., and McMullen, T. B., Trends in urban air quality, EOS, Trans. Am. Geophys. Union 51, 468–475 (1970); reprinted as Chapter 25 in “Man’s Impact on the Climate,” W. H. Matthews, W. W. Kellogg, and G. D. Robinson, eds., MIT Press, Cambridge, Mass, 1971.Google Scholar
  58. 58.
    Ellis, H. T., and Pueschel, R. F., Solar radiation: absence of air pollution trends at Mauna Loa, Science 172, 845–846 (1971).CrossRefGoogle Scholar
  59. 59.
    Robinson, E., and Robbins, R. E., Emissions, concentrations, and rate of particulate atmospheric pollutants, Final Report, SRI Project SCC-8507, 1971.Google Scholar
  60. 60.
    Kellogg, W. W., Cadle, R. D., Allen, E. R., Lazrus, A. L., and Martell, E. A., Man’s contributions are compared to natural sources of sulfur compounds in the atmosphere and oceans, Science, 175, 587–596 (1972).CrossRefGoogle Scholar
  61. 61.
    Went, F. W., Organic matter in the atmosphere, Proc. Nat. Acad. Sci. 46, 212 (1960).CrossRefGoogle Scholar
  62. 62.
    Cronin, J. F., Recent volcanism and the stratosphere, Science 172, 847–849 (1971).CrossRefGoogle Scholar
  63. 63.
    Lamb, H. H., Volcanic dust in the atmosphere: with a chronology and an assessment of its meteorological significance, Phil. Trans. Royal Soc. 266, 425–533 (1970).Google Scholar
  64. 64.
    Junge, C. E., and Manson, J. E., Stratospheric aerosol studies, J. Geophys. Res. 66, 2163– 2182(1961).Google Scholar
  65. 65.
    Cadle, R. D., Lazrus, A. L. Pollack, W. H., and Shedlovsky, J. P., Chemical composition of aerosol particles in the tropical stratosphere, in “Proc. Symp. Tropical Meteorology,” Paper K-IV American Meteorological Society, Boston, 1970.Google Scholar
  66. 66.
    Cadle, R. D., Stratospheric particles, in “Man’s Impact on the Climate,” W. H. Matthews, W. W. Kellogg, and G. D. Robinson, eds., MIT Press, Cambridge, Mass., 1971, Chapter 37.Google Scholar
  67. 67.
    Lazrus, A. L., Gandrud, B., and Cadle, R. D., Chemical composition of air filtration samples of the stratospheric sulfate layer, J. Geophys. Res. 76, 8083–8089 (1971).CrossRefGoogle Scholar
  68. 68.
    Murcray, D. R., Kyle, T. G., Murcray, F. H., and Williams, W. J., Presence of HN03 in the upper atmosphere, J. Opt. Soc. Am. 59, 1131 (1969).CrossRefGoogle Scholar
  69. 69.
    Newell, R. E., Modification of stratospheric properties by trace constituent changes, Nature 227, 697–699 (1970); reprinted as Chapter 38 in “Man’s Impact on the Climate,” W. H. Matthews, W. W. Kellogg, and G. D. Robinson, eds., MIT Press, Cambridge, Mass., 1971.Google Scholar
  70. 70.
    Park, J., The photochemical relation between water vapor and ozone in the stratosphere (abstract), EOS, Trans. Am. Geophys. Union 51, 735 (1970).Google Scholar
  71. 71.
    Johnston, H., Reduction of stratospheric ozone by nitrogen oxide catalysts from SST exhaust, Science 173, 517–522 (1971).CrossRefGoogle Scholar
  72. 72.
    Crutzen, P. J., Ozone production rates in an oxygen-hydrogen-nitrogen oxide atmosphere, J. Geophys. Res. 76, 7311–7327 (1971).CrossRefGoogle Scholar
  73. 73.
    Nicolet, M., and Vergison, L., Nitrous oxide in the stratosphere, Aeronomica Acta A 1970, No. 89 ( Institut d’Aeronomie Spatiale de Belgique, Brussels ).Google Scholar
  74. 74.
    Mastenbrook, J. H., The variability of water vapor in the stratosphere, J. Atmos. Sci. 28, 1495–1501 (1971).CrossRefGoogle Scholar
  75. 75.
    Komhyr, W. D., Barrett, E. W., Slocum, G., and Weickmann, H. K., Atmospheric total ozone increases during the 1960’s, Nature 232, 390–391 (1971).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Stephen H. Schneider
    • 1
  • William W. Kellogg
    • 1
  1. 1.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations