Advertisement

Direct-Sampling Studies of Combustion Processes

  • E. L. Knuth

Abstract

As has been emphasized in the preceding chapters, long-standing considerations of engine performance have been supplemented now by considerations of engine emissions. These considerations intensify the need for more detailed information on combustion processes. Information of interest includes effects of design modifications, fuel changes, and operating conditions on spatial distributions of chemical species in reciprocating-engine and gas-turbine combustion chambers and on temporal variations in reciprocating-engine combustion chambers.

Keywords

Combustion Chamber Combustion Process Engine Speed Speed Ratio Mass Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Newhall, H.K. and Starkman, E.S., Direct Spectroscopic Determination of Nitric Oxide in Reciprocating Engine Cylinders, Paper No. 670122, Society of Automotive Engineers, New York, 1967.CrossRefGoogle Scholar
  2. 2.
    Lavoie, G.A., Heywood, J.B., and Keck, J.C., Experimental and theoretical study of nitric oxide formation in internal combustion engines, Combustion Science and Technology, Vol. 1, 1970, pp. 313–326.CrossRefGoogle Scholar
  3. 3.
    Smith, D.S. and Starkman, E.S., A spectroscopic study of the hydroxyl radical in an internal combustion engine, Thirteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1971.Google Scholar
  4. 4.
    Lewis, J.D., and Harrison, D., A study of combustion and recombination reactions during the nozzle expansion process of a liquid propellant rocket engine, Eighth Symposium (International) on Combustion, The Williams and Wilkins Co., Baltimore, 1962, pp. 366–374.Google Scholar
  5. 5.
    Daniel, W.A., Engine variable effects on exhaust hydrocarbon composition (a single-cylinder engine study with propane as the fuel), SAE Trans. 76 (1968) 774–795.Google Scholar
  6. 6.
    Foner, S.N., Mass spectrometry of free radicals, in Advances in Atomic and Molecular Physics Vol. 2, (D.R. Bates and I. Estermann, eds.), Academic Press, New York, 1966, pp. 385–461.CrossRefGoogle Scholar
  7. 7.
    Greene, F.T., and Milne, T.A., Molecular beam sampling of high temperature systems, AIAA Paper 67–37, presented at AIAA 5th Aerospace Sciences Meeting, New York, January 23–26, 1967.Google Scholar
  8. 8.
    Sturtevant, B., and Wang, C.P., Mass spectrometric studies of impurity ionization in shock-heated argon, Recent Advances in Aerothermochemistry Vol. 2 (I. Glassman, ed.), NATO Advisory Group for Aerospace Research and Development, Paris, 1967, pp. 595–606.Google Scholar
  9. 9.
    Dix, R.E., Sampling Probe for Instantaneous Mass Spectrometric Analysis of Rarefied High Enthalpy Flow, AEDC-TR-69–37, ARO Inc., Arnold Air Force Station, Tennessee, April 1969.Google Scholar
  10. 10.
    Chang, J.H., Supersonic molecular beam sampling system for mass spectrometric studies of high-pressure flow systems, AIAA Preprint 69–64, Presented at the AIAA 7th Aerospace Sciences Meeting, New York, January 20–22, 1969.Google Scholar
  11. 11.
    Kahrs, J., Combustion-Gas Sampling System, AFRPL-TR-70–28, Air Force Rocket Propulsion Laboratory, Edwards, California, March 1970.Google Scholar
  12. 12.
    Young, W.S., Wang, Y.G., Rodgers, W.E., and Knuth, EX., Molecular-beam sampling of gases in engine cylinders, Technology Utilization Ideas for the 70’s and Beyond, American Astronautical Society, Tarzana, 1971, pp. 281–289.Google Scholar
  13. 13.
    Sherman, F.S., Self-Similar Development of Inviscid Hypersonic Free-Jet Flows, Technical Report: Fluid Mechanics 6–90–63–61, Lockheed Missiles and Space Company, Sunnyvale, California, May 23, 1963.Google Scholar
  14. 14.
    Knuth, E.L., Rotational and Translational Relaxation Effects in Low-Density Hypersonic Free Jets, Department of Engineering Report No. 64–53, University of California Los Angeles, Los Angeles, November 1964.Google Scholar
  15. 15.
    Ashkenas, H., and Sherman, F.S., The structure and utilization of supersonic free jets in low density wind tunnels, Rarefied Gas Dynamics Vol. 2, (J.H. de Leeuw, ed.), Academic Press, New York, 1966, pp. 84–105.Google Scholar
  16. 16.
    Friedman, R., and Johnston, W.C., The wall-quenching of laminar propane flames as a function of pressure, temperature, and air-fuel ratio, J. Appl. Phys. 21 (August 1950) 791–795.CrossRefGoogle Scholar
  17. 17.
    Green, K.A., and Agnew, J.T., Quenching distances of propane-air flames in a constant-volume bomb, Combustion and Flame, 15 (October 1970) 189–191.CrossRefGoogle Scholar
  18. 18.
    Daniel, W.A., Why engine variables affect exhaust hydrocarbon emission, SAE Paper No. 700108, Presented at the Automotive Engineering Congress, Detroit, Michigan, January 12–16, 1970.CrossRefGoogle Scholar
  19. 19.
    Ellenberger, J.M., and Bowlus, D.A., Single Wall Quench Distance Measurements, Presented at the 1971 Technical Session, Central States Section, The Combustion Institute, The University of Michigan, Ann Arbor, March 23–24, 1971.Google Scholar
  20. 20.
    Pinkerton, J.D., Some Factors Affecting Emissions from Spark Ignition Engines, Ph.D. Thesis, UCLA School of Engineering and Applied Science, Los Angeles, 1971.Google Scholar
  21. 21.
    Young, W.S., Wang, Y.G., Rodgers, W.E., and Knuth, EX., Timing Effects on Gas Compositions in an Engine Cylinder, Presented at the 1971 Technical Session, Central States Section, The Combustion Institute, The University of Michigan, Ann Arbor, March 23–24, 1971.Google Scholar
  22. 22.
    Sturtevant, B., Application of a magnetic mass spectrometer to ionization studies in impure shock-heated argon, J. Fluid Mech. 15 (1966) 641–656.CrossRefGoogle Scholar
  23. 23.
    Bauer, H.-J., Phenomenological theory of the relaxation phenomena in gases, in Physical Accoustics Principles and Methods, Vol. II, Part A, Properties of Gases, Liquids and Solutions (W.P. Mason, ed.), Academic Press, New York, 1965, pp. 47–131.Google Scholar
  24. 24.
    McIntyre, R.W., and Leslie, R.S.E., Comparative evaluation of several approximate methods of analysis of non-equilibrium flows, in Recent Advances in Aerothermo-chemisty Vol. 2, (I. Glassman, ed.), NATO Advisory Group for Aerospace Research and Development, Paris, 1967, pp. 685–699.Google Scholar
  25. 25.
    Bray, K.N.C., Chemical and vibrational nonequilibrium in nozzle flows, Nonequilibrium Flows, Part II (P.P. Wegener, ed.), Marcel Dekker, Inc., New York, 1970, pp. 59–157.Google Scholar
  26. 26.
    Phinney, R., Mathematical Nature of the Freezing Point in an Expanding Flow, RM-172, Martin Marietta Co., Baltimore, April 1964.Google Scholar
  27. 27.
    Burwell, W.G., Sarli, V.J., and Zupnik, T.F., Applicability of sudden-freezing criteria in analysis of chemically complex rocket nozzle expansions, in Recent Advances in Aerothermochemisty Vol. 2, (I. Glassman, ed.), NATO Advisory Group for Aerospace Research and Development, Paris, 1967, pp. 701–759.Google Scholar
  28. 28.
    Glowacki, W.J., Effect of Finite Oxygen Recombination Rate on the Flow Conditions in Hypersonic Nozzles, NOLTR 61–23, September 1961.Google Scholar
  29. 29.
    Phinney, R., Review of Freezing Point Techniques for Computing Relaxation Flows, RM-143, Martin Marietta, Baltimore, March 1963.Google Scholar
  30. 30.
    Bray, K.N.C., Simplified sudden-freezing analysis for nonequilibrium nozzle flows, ARS J. 31 (June 1961) 831–834.Google Scholar
  31. 31.
    Ring, L.E., and Johnson, P.W., Correlation and Prediction of Air Nonequilibrium in Nozzles, AIAA Paper No. 68–378, Presented at the AIAA 3rd Aerodynamic Testing Conference, San Francisco, April 8–10, 1968.Google Scholar
  32. 32.
    Wegener, P.P., Gasdynamics of expansion flows with condensation, and homogeneous nucleation of water vapor, in Nonequilibrium Flows, Part I (P.P. Wegener, ed.), Marcel Dekker, Inc., New York, 1970, pp. 163–243.Google Scholar
  33. 33.
    Becker, E.W., Bier, K., and Henkes, W., Strahlen aus Kondensierten Atomen und Molekeln in Hochvakuum, Z. Physik, 146 (September 21, 1956) 333–338.CrossRefGoogle Scholar
  34. 34.
    Anderson, J.B., Anderes, R.P., Fenn, J.B., and Maise, G., Studies of low density supersonic jets, Rarefied Gas Dynamics Vol. II, (J.H. de Leeuw, ed.), Academic Press, New York, 1966, pp. 106–127.Google Scholar
  35. 35.
    Golomb, D., Good, R.E., and Brown, R.F., Dimers and clusters in free jets of argon and nitric oxide, J. Chem. Phys. 52 (February 1, 1970) 1545–1551.CrossRefGoogle Scholar
  36. 36.
    Milne, T.A., Vandergrift, A.E., and Greene, F.T., Mass-spectometric observations of argon clusters in nozzle beams. II. The kinetics of dimer growth, J. Chem. Phys. 52 (February 1, 1970) 1552–1560.CrossRefGoogle Scholar
  37. 37.
    Golomb, D., and Good, R.E., Clusters in isentropically expanding nitric oxide and their effect on the chemiluminous NO-O reaction, J. Chem. Phys. 49 (November 1, 1968) pp. 4176–4180.CrossRefGoogle Scholar
  38. 38.
    Good, R.E., Golomb, D., DelGreco, F.P., Hill, D.W., and Whitfield, D.L., Clusters in nitric oxide jet expansion, Rarefied Gas Dynamics Vol. 2 (L. Trilling and H.Y. Wachman, eds.), Academic Press, New York, 1969, pp. 1449–1453.Google Scholar
  39. 39.
    Bier, K., and Hagena, O., Optimum conditions for generating supersonic molecular beams, in Rarefied Gas Dynamics Vol. II, (J. H. de Leeuw, ed), Academic Press, New York, 1966, 260–278.Google Scholar
  40. 40.
    Milne, T.A., and Greene, F.T., Mass-spectrometric detection of dimers of nitric oxide and other polyatomic molecules, J. Chem. Phys. 47 (November 1, 1967) 3668–3669.CrossRefGoogle Scholar
  41. 41.
    Milne, T.A., and Greene, F.T., Mass spectrometric observations of argon clusters in nozzle beams. I. General behavior and equilibrium dimer concentrations, J. Chem. Phys. 47 (November 15, 1967) 4095–4101.CrossRefGoogle Scholar
  42. 42.
    Greene, F.T., and Milne, T.A., Mass spectrometric detection of polymers in supersonic molecular beams, J. Chem. Phys. 39 (December 1, 1963) 3150–3151.CrossRefGoogle Scholar
  43. 43.
    Bier, K. and Hagena, O., Influence of shock waves on the generation of high-intensity molecular beams by nozzles, Rarefied Gas Dynamics (J.A. Laurmann, ed.), Vol. I, Academic Press, New York, 1963, pp. 478–496.Google Scholar
  44. 44.
    Reis, V.H. and Fenn, J.B., Separation of gas mixtures in supersonic jetsj, J. Chem. Phys. 39 (December 15, 1963) 3240–3250.CrossRefGoogle Scholar
  45. 45.
    Rothe, D.E., Electron beam studies of the diffusive separation of helium-argon mixtures, Phys. Fluids 9 (September 1966) 1643–1658.CrossRefGoogle Scholar
  46. 46.
    Young, W.S., Rodgers, W.E., Cullian, C.A., and Knuth, E.L., Molecular-beam sampling of gas mixtures in cycling-pressure sources, Proceedings of the Seventh International Symposium on Rarefied Gas Dynamics held at Pisa, Italy, June 29-July 3, 1970.Google Scholar
  47. 47.
    Knuth, E.L., Supersonic Molecular Beams, App. Mech. Rev. 17 (October 1964) 751–762.Google Scholar
  48. 48.
    Anderson, J.B., Andres, R.P., and Fenn, J.B., High intensity and high energy molecular beams, in Advances in Atomic and Molecular Physics (D.R. Bates and I. Estermann, eds.), Academic Press, New York, 1965, pp. 345–389.Google Scholar
  49. 49.
    Anderson, J.B., Andres, R.P., and Fenn, J.B., Supersonic nozzle beams, Molecular beams (J. Ross, ed.), Wiley, New York, 1966, pp. 275–317.Google Scholar
  50. 50.
    French, J.B., Continuum-source molecular beams, AIAA J. 3 (June 1965) pp. 993–1000.CrossRefGoogle Scholar
  51. 51.
    Vick, A.R., and Andrews, E.H. Jr., An Investigation of Highly Underexpanded Exhaust Plumes Impinging upon a Perpendicular Flat Surface, NASA TN D-3269, February 1966, 55 pp.Google Scholar
  52. 52.
    Bier, K. and Schmidt, B., Zur Form der Verdichtungsstösse in frei expandierenden Gasstrahlen, Z. für angewandte Physik 13 (November 1961) 493–500.Google Scholar
  53. 53.
    Roberts, L., The action of a hypersonic jet on a dust layer, IAS Paper No. 63–50, Presented at the IAS 31st Annual Meeting, New York, January 21–23, 1963.Google Scholar
  54. 54.
    Bossel, U., Skimmer interaction: transition from a ‘shock beam’ to a supersonic nozzle beam, Entropie No. 30 (November-December 1969) 11–15.Google Scholar
  55. 55.
    Oman, R.A., Analysis of a skimmer for a high-intensity molecular beam using a three-fluid model, The Physics of Fluids, 6 (July 1963) 1030–1031.CrossRefGoogle Scholar
  56. 56.
    French, J.B., and McMichael, G.E., Progress in developing high energy nozzle beams, Rarefied Gas Dynamics, Vol. II (C.L. Brundin, ed.), Academic Press, New York, 1967, pp. 1385–1392.Google Scholar
  57. 57.
    Bossel, U., On the Optimization of Skimmer Geometries, submitted for publication.Google Scholar
  58. 58.
    Fenn, J.B., and Deckers, J., Molecular beams from nozzle sources, Rarefied Gas Dynamics, Vol. I (J.A. Laurmann, ed.), Academic Press, New York, 1963, pp. 497–515.Google Scholar
  59. 59.
    Fisher, S.S., and Knuth, E.L., Properties of low-density freejets measured using molecular-beam techniques, AIAA J. 7 (June 1969) 1174–1177.CrossRefGoogle Scholar
  60. 60.
    Potter, J.L., and Miller, J.T., Sphere drag and dynamic simulation in near-free-molecular flow, Rarefied Gas Dynamics Vol. I (L. Trilling and H.Y. Wachman, eds.), Academic Press, New York, 1969, pp. 723–734.Google Scholar
  61. 61.
    Brown, R.F., and Heald, J.H. Jr., Background gas scattering and skimmer intraction studies usirig a cryogenically pumped molecular beam generator, Rarefied Gas Dynamics Vol. II (C.L. Brundin, ed.), Academic Press, New York, 1967, pp. 1407–1424.Google Scholar
  62. 62.
    Valleau, J.P., and Deckers, J.M., Supersonic molecular beams. II. Theory of the formation of supersonic molecular beams, Can. J. Chem. 43 (January 1965) 6–17.CrossRefGoogle Scholar
  63. 63.
    Becker, E.W., Bier, K., and Burghoff, H., Die Trenndüse, Z. Naturforschung 10a (July 1955) 565–572.Google Scholar
  64. 64.
    Becker, E.W., Beyrich, W., Bier, K., Burghoff, H., and Zigan, F., Das Trenndüsenverfahren, Z. Naturforschung 12a (August 1957) 607–621.Google Scholar
  65. 65.
    Waterman, P.C., and Stern, S.A., Separation of gas mixtures in a supersonic jet, J. Chem Phys. 31 (August 1959) 405–419.CrossRefGoogle Scholar
  66. 66.
    Stern, S.A., Waterman, P.C., and Sinclair, T.F., Separation of gas mixtures in a supersonic jet. II. Behavior of heliumargon mixtures and evidence of shock separation, J. Chem. Phys. 33 (September 1960) 805–813.CrossRefGoogle Scholar
  67. 67.
    Abuaf, N., Anderson, J.B., Andres, R.P., Fenn, J.B., Miller, D.R., Studies of low density supersonic jets, in Rarefied Gas Dynamics Vol. 2, (C.L. Brundin, ed.), Academic Press, New York, 1967, pp. 1317–1136.Google Scholar
  68. 68.
    Anderson, J.B., Separation of gas mixtures in free jets, AIChE.13 (November 1967) 1188–1192.CrossRefGoogle Scholar
  69. 69.
    Wang, J.C.F., and Bauer, P.H., Measurements of spatial distribution of species in helium argon gas mixtures expanding in supersonic jets, in Rarefied Gas Dynamics (L. Trilling and H.Y. Wachman, eds.), Vol. II, Academic Press, New York, 1969, pp. 1009–1013.Google Scholar
  70. 70.
    Sebacher, D.I., Guy, R.W., and Lee, L.P., Diffusive separation in free jets of nitrogen and helium mixtures, Rarefied Gas Dynamics (L. Trilling and H.Y. Wachman, eds.), Vol. II, Academic Press, New York, 1969, pp. 931–938.Google Scholar
  71. 71.
    Zigan, F., Gasdynamische Berechnung der Trenndüsenentmischung, Z. Naturforschung 17a (1962) 772–778.Google Scholar
  72. 72.
    Sherman, F.S., Hydrodynamical theory of diffusive separation of mixtures in a free jet, Phys. Fluids 8 (May 1965) 773–779.CrossRefGoogle Scholar
  73. 73.
    Mikami, H., and Takashima, Y., Separation of gas mixture in an axisymmetric supersonic jet, Int. J. Heat Mass Transfer 11 (November 1968) 1597–1610.CrossRefGoogle Scholar
  74. 74.
    Campargue, R., Aerodynamic separation effect on gas and isotope mixtures induced by invasion of the free jet shock wave structure, J. Chem. Phys. 52 (February 15, 1970) 1795–1802.CrossRefGoogle Scholar
  75. 75.
    Bier, K., Umkehrung der Trenndüsen-Entmischung in Überexpandierten Gasstrahlen, Z. Naturforschung 15a (August 1960) 714–723.Google Scholar
  76. 76.
    Sebacher, D.I., Diffusive separation in shock waves and free jets of nitrogen-helium mixtures, AIAA. 6 (January 1968) 51–58.CrossRefGoogle Scholar
  77. 77.
    Chow, R.R., On the Separation Phenomenon of Binary Gas Mixture in an Axisymmetric Jet, Technical Report HE-150–175, University of California Institute of Engineering Research, Berkeley, November 4, 1959.Google Scholar
  78. 78.
    Schügerl, K., Investigations and applications of supersonic molecular beams, Rarefied Gas Dynamics (L. Trilling and H.Y. Wachman, eds.), Vol. 2, Academic Press, New York, 1969, pp. 909–930.Google Scholar
  79. 79.
    Aurich, V., and Schügerl, K., Determination of the radial distributions of the number densitites of the components in supersonic free jets of binary gas mixtures by molecular beam sampling, Entropie No. 30 (November-December 1969) 21–24.Google Scholar
  80. 80.
    Greene, F.T., Brewer, J., and Milne, T.A., Mass spectrometric studies of reactions in flames. I. Beam formation and mass dependence in sampling 1-atm gases, J. Chem. Phys. 40 (March 15, 1964) 1488–1495.CrossRefGoogle Scholar
  81. 81.
    Klingelhöfer, R., and Lohse, P., Production of fast molecular beams using gaseous mixtures, Phys. Fluids 7 (March 1964) 379–381.CrossRefGoogle Scholar
  82. 82.
    French, J.B., and O’Keefe, D.R., Omegatron studies of a skimmed beam system, Rarefied Gas Dynamics (J.H. de Leeuw, ed.), Vol. II, Academic Press, New York, 1966, pp. 299–310.Google Scholar
  83. 83.
    Fenn, J.B., and Anderson, J.B., Background and sampling effects in free jet studies by molecular beam measurements, Rarefied Gas Dynamics (J.H. de Leeuw, ed.), Vol. II, Academic Press, New York, 1966, pp. 311–330.Google Scholar
  84. 84.
    Knuth, E.L., Kuluva, N.M., and Callinan, J.P., Densities and speeds in an arc-heated supersonic argon beam, Entropie No. 18 (November-December 1967) 38–46.Google Scholar
  85. 85.
    Young, W.S., and Knuth, E.L., A binary-mixture arc-heated supersonic molecular beam, Entropie No. 30 (November-December 1969) 25–29.Google Scholar
  86. 86.
    LeRoy R.L., Govers, T.R., and Deckers, J.M., Background scattering of a supersonic free jet: Source temperature dependence, Can. J. Chem. 47 (1969) 2305–2306.CrossRefGoogle Scholar
  87. 87.
    Beynon, J., Mass Spectrometry and its Applications to Organic Chemistry, Elsevier Publishing Co., New York, 1960.Google Scholar
  88. 88.
    Kuentzel, L.E., Index of Mass Spectral Data, American Society for Testing and Materials, Philadelphia, 1963.Google Scholar
  89. 89.
    Rinehart, K.L., Jr., and Kinstle, T.H., Mass spectrometry, Annual Review of Physical Chemistry (H. Eyring, C.J. Christensen, and H.S. Johnston, eds.), Vol. 19, Annual Reviews, Inc., Palo Alto, 1968, pp. 301–342.Google Scholar
  90. 90.
    Cassuto, A., Variations in mass spectra with the temperature of the ionization chamber between — 150°C and + 200 °C, Advances in Mass Spectrometry, Vol. 2, Pergamon Press, Oxford, 1963, pp. 296–312.Google Scholar
  91. 91.
    Ehrhardt, H. and Osberghaus, O., Massenspektrometrische Untersuchungen von Kohlenwasserstoffen bei hohen Temperaturen, Z. Naturforschung 13a (1958) 16–21.Google Scholar
  92. 92.
    Komarov, V.N., and Tikhomirov, M.V., Temperature dependence of mass spectra. I. Mass spectra of ethylene and propane, Russ. J. Phys. Chem. 40 (December 1966) 1594–1597.Google Scholar
  93. 93.
    Milne, T.A., Beachey, J.E., and Greene, F.T., Study of relaxation in free jets using temperature dependence of n-butane mass spectra, J. Chem. Phys. 56 (March 15, 1972) 3007–3013.CrossRefGoogle Scholar
  94. 94.
    Ehrhardt, H., and Osberghaus, O., Temperaturabhängigkeit der Massenspektren von Kohlenwasserstoffmolekülen und ihre Bedeutung im Rahmen der statistischen Theorie, Z. Naturforschung 15a (1960) 575–584.Google Scholar
  95. 95.
    Komarov, V.N., and Tikhomirov, M.V., The effect of temperature on the mass spectra of propane and butane, Russ. J. Phys. Chem. 40 (August 1966) 1047–1048.Google Scholar
  96. 96.
    Rich, J.W., and Treanor, C.E., Vibrational relaxation in gas -dynamic flows, Annual Review of Fluid Mechanics, Vol. 2, Annual Reviews, Inc., Palo Alto, 1970, pp. 355–396.Google Scholar
  97. 97.
    Herzfeld, K.F., and Litovitz, T.A., Absorption and Dispersion of Ultrasonic Waves, Academic Press, New York, 1959.Google Scholar
  98. 98.
    Stevens, B., Collisional Activation in Gases, Pergamon Press, New York, 1967.Google Scholar
  99. 99.
    Tikhomirov, M.V. and Komarov, V.N., Effect of the surface on the mass spectrum of tetrafluoroethylene and the appearance potential of F+, Russ. J. Phys. Chem. 40 (June 1966) 751–753.Google Scholar
  100. 100.
    Young, W.S., Rodgers, W.E., Cullian, C.A., and Knuth, E.L., Supersonic molecular beams with cycling-pressure sources, AIAA J. 9 (Feb. 1971) 323–325.CrossRefGoogle Scholar
  101. 101.
    Young, W.S., Rodgers, W.E., Cullian, C.A., Wang, Y.G., and Knuth, E.L., A method for sampling the instantaneous chemical compositions in an internal combustion engine, Proceedings of the Second International Clean Air Conference (H.M. Englund and W.T. Beery, eds.), Academic Press, New York, 1971, pp. 418–424.Google Scholar
  102. 102.
    Newhall, H.K., Kinetics of engine-generated nitrogen oxides and carbon monoxide, Twelfth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1969, pp. 603–613.Google Scholar
  103. 103.
    Caretto, L.S., Muzio, L.J., Sawyer, R.F., and Starkman, E.S., The role of kinetics in engine emission of nitric oxide, Presented at the Third Joint Meeting, The American Institute of Chemical Engineers and Instituto Mexicano de Ingienieros Quimicos, Denver, Colorado, August 30-September 2, 1970.Google Scholar

Copyright information

© Plenum Press New York 1973

Authors and Affiliations

  • E. L. Knuth
    • 1
  1. 1.School of Engineering and Applied ScienceUniversity of CaliforniaLos AngelesUSA

Personalised recommendations