Skip to main content

Direct-Sampling Studies of Combustion Processes

  • Chapter
Engine Emissions

Abstract

As has been emphasized in the preceding chapters, long-standing considerations of engine performance have been supplemented now by considerations of engine emissions. These considerations intensify the need for more detailed information on combustion processes. Information of interest includes effects of design modifications, fuel changes, and operating conditions on spatial distributions of chemical species in reciprocating-engine and gas-turbine combustion chambers and on temporal variations in reciprocating-engine combustion chambers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Newhall, H.K. and Starkman, E.S., Direct Spectroscopic Determination of Nitric Oxide in Reciprocating Engine Cylinders, Paper No. 670122, Society of Automotive Engineers, New York, 1967.

    Book  Google Scholar 

  2. Lavoie, G.A., Heywood, J.B., and Keck, J.C., Experimental and theoretical study of nitric oxide formation in internal combustion engines, Combustion Science and Technology, Vol. 1, 1970, pp. 313–326.

    Article  CAS  Google Scholar 

  3. Smith, D.S. and Starkman, E.S., A spectroscopic study of the hydroxyl radical in an internal combustion engine, Thirteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1971.

    Google Scholar 

  4. Lewis, J.D., and Harrison, D., A study of combustion and recombination reactions during the nozzle expansion process of a liquid propellant rocket engine, Eighth Symposium (International) on Combustion, The Williams and Wilkins Co., Baltimore, 1962, pp. 366–374.

    Google Scholar 

  5. Daniel, W.A., Engine variable effects on exhaust hydrocarbon composition (a single-cylinder engine study with propane as the fuel), SAE Trans. 76 (1968) 774–795.

    Google Scholar 

  6. Foner, S.N., Mass spectrometry of free radicals, in Advances in Atomic and Molecular Physics Vol. 2, (D.R. Bates and I. Estermann, eds.), Academic Press, New York, 1966, pp. 385–461.

    Chapter  Google Scholar 

  7. Greene, F.T., and Milne, T.A., Molecular beam sampling of high temperature systems, AIAA Paper 67–37, presented at AIAA 5th Aerospace Sciences Meeting, New York, January 23–26, 1967.

    Google Scholar 

  8. Sturtevant, B., and Wang, C.P., Mass spectrometric studies of impurity ionization in shock-heated argon, Recent Advances in Aerothermochemistry Vol. 2 (I. Glassman, ed.), NATO Advisory Group for Aerospace Research and Development, Paris, 1967, pp. 595–606.

    Google Scholar 

  9. Dix, R.E., Sampling Probe for Instantaneous Mass Spectrometric Analysis of Rarefied High Enthalpy Flow, AEDC-TR-69–37, ARO Inc., Arnold Air Force Station, Tennessee, April 1969.

    Google Scholar 

  10. Chang, J.H., Supersonic molecular beam sampling system for mass spectrometric studies of high-pressure flow systems, AIAA Preprint 69–64, Presented at the AIAA 7th Aerospace Sciences Meeting, New York, January 20–22, 1969.

    Google Scholar 

  11. Kahrs, J., Combustion-Gas Sampling System, AFRPL-TR-70–28, Air Force Rocket Propulsion Laboratory, Edwards, California, March 1970.

    Google Scholar 

  12. Young, W.S., Wang, Y.G., Rodgers, W.E., and Knuth, EX., Molecular-beam sampling of gases in engine cylinders, Technology Utilization Ideas for the 70’s and Beyond, American Astronautical Society, Tarzana, 1971, pp. 281–289.

    Google Scholar 

  13. Sherman, F.S., Self-Similar Development of Inviscid Hypersonic Free-Jet Flows, Technical Report: Fluid Mechanics 6–90–63–61, Lockheed Missiles and Space Company, Sunnyvale, California, May 23, 1963.

    Google Scholar 

  14. Knuth, E.L., Rotational and Translational Relaxation Effects in Low-Density Hypersonic Free Jets, Department of Engineering Report No. 64–53, University of California Los Angeles, Los Angeles, November 1964.

    Google Scholar 

  15. Ashkenas, H., and Sherman, F.S., The structure and utilization of supersonic free jets in low density wind tunnels, Rarefied Gas Dynamics Vol. 2, (J.H. de Leeuw, ed.), Academic Press, New York, 1966, pp. 84–105.

    Google Scholar 

  16. Friedman, R., and Johnston, W.C., The wall-quenching of laminar propane flames as a function of pressure, temperature, and air-fuel ratio, J. Appl. Phys. 21 (August 1950) 791–795.

    Article  CAS  Google Scholar 

  17. Green, K.A., and Agnew, J.T., Quenching distances of propane-air flames in a constant-volume bomb, Combustion and Flame, 15 (October 1970) 189–191.

    Article  CAS  Google Scholar 

  18. Daniel, W.A., Why engine variables affect exhaust hydrocarbon emission, SAE Paper No. 700108, Presented at the Automotive Engineering Congress, Detroit, Michigan, January 12–16, 1970.

    Book  Google Scholar 

  19. Ellenberger, J.M., and Bowlus, D.A., Single Wall Quench Distance Measurements, Presented at the 1971 Technical Session, Central States Section, The Combustion Institute, The University of Michigan, Ann Arbor, March 23–24, 1971.

    Google Scholar 

  20. Pinkerton, J.D., Some Factors Affecting Emissions from Spark Ignition Engines, Ph.D. Thesis, UCLA School of Engineering and Applied Science, Los Angeles, 1971.

    Google Scholar 

  21. Young, W.S., Wang, Y.G., Rodgers, W.E., and Knuth, EX., Timing Effects on Gas Compositions in an Engine Cylinder, Presented at the 1971 Technical Session, Central States Section, The Combustion Institute, The University of Michigan, Ann Arbor, March 23–24, 1971.

    Google Scholar 

  22. Sturtevant, B., Application of a magnetic mass spectrometer to ionization studies in impure shock-heated argon, J. Fluid Mech. 15 (1966) 641–656.

    Article  Google Scholar 

  23. Bauer, H.-J., Phenomenological theory of the relaxation phenomena in gases, in Physical Accoustics Principles and Methods, Vol. II, Part A, Properties of Gases, Liquids and Solutions (W.P. Mason, ed.), Academic Press, New York, 1965, pp. 47–131.

    Google Scholar 

  24. McIntyre, R.W., and Leslie, R.S.E., Comparative evaluation of several approximate methods of analysis of non-equilibrium flows, in Recent Advances in Aerothermo-chemisty Vol. 2, (I. Glassman, ed.), NATO Advisory Group for Aerospace Research and Development, Paris, 1967, pp. 685–699.

    Google Scholar 

  25. Bray, K.N.C., Chemical and vibrational nonequilibrium in nozzle flows, Nonequilibrium Flows, Part II (P.P. Wegener, ed.), Marcel Dekker, Inc., New York, 1970, pp. 59–157.

    Google Scholar 

  26. Phinney, R., Mathematical Nature of the Freezing Point in an Expanding Flow, RM-172, Martin Marietta Co., Baltimore, April 1964.

    Google Scholar 

  27. Burwell, W.G., Sarli, V.J., and Zupnik, T.F., Applicability of sudden-freezing criteria in analysis of chemically complex rocket nozzle expansions, in Recent Advances in Aerothermochemisty Vol. 2, (I. Glassman, ed.), NATO Advisory Group for Aerospace Research and Development, Paris, 1967, pp. 701–759.

    Google Scholar 

  28. Glowacki, W.J., Effect of Finite Oxygen Recombination Rate on the Flow Conditions in Hypersonic Nozzles, NOLTR 61–23, September 1961.

    Google Scholar 

  29. Phinney, R., Review of Freezing Point Techniques for Computing Relaxation Flows, RM-143, Martin Marietta, Baltimore, March 1963.

    Google Scholar 

  30. Bray, K.N.C., Simplified sudden-freezing analysis for nonequilibrium nozzle flows, ARS J. 31 (June 1961) 831–834.

    CAS  Google Scholar 

  31. Ring, L.E., and Johnson, P.W., Correlation and Prediction of Air Nonequilibrium in Nozzles, AIAA Paper No. 68–378, Presented at the AIAA 3rd Aerodynamic Testing Conference, San Francisco, April 8–10, 1968.

    Google Scholar 

  32. Wegener, P.P., Gasdynamics of expansion flows with condensation, and homogeneous nucleation of water vapor, in Nonequilibrium Flows, Part I (P.P. Wegener, ed.), Marcel Dekker, Inc., New York, 1970, pp. 163–243.

    Google Scholar 

  33. Becker, E.W., Bier, K., and Henkes, W., Strahlen aus Kondensierten Atomen und Molekeln in Hochvakuum, Z. Physik, 146 (September 21, 1956) 333–338.

    Article  Google Scholar 

  34. Anderson, J.B., Anderes, R.P., Fenn, J.B., and Maise, G., Studies of low density supersonic jets, Rarefied Gas Dynamics Vol. II, (J.H. de Leeuw, ed.), Academic Press, New York, 1966, pp. 106–127.

    Google Scholar 

  35. Golomb, D., Good, R.E., and Brown, R.F., Dimers and clusters in free jets of argon and nitric oxide, J. Chem. Phys. 52 (February 1, 1970) 1545–1551.

    Article  CAS  Google Scholar 

  36. Milne, T.A., Vandergrift, A.E., and Greene, F.T., Mass-spectometric observations of argon clusters in nozzle beams. II. The kinetics of dimer growth, J. Chem. Phys. 52 (February 1, 1970) 1552–1560.

    Article  CAS  Google Scholar 

  37. Golomb, D., and Good, R.E., Clusters in isentropically expanding nitric oxide and their effect on the chemiluminous NO-O reaction, J. Chem. Phys. 49 (November 1, 1968) pp. 4176–4180.

    Article  CAS  Google Scholar 

  38. Good, R.E., Golomb, D., DelGreco, F.P., Hill, D.W., and Whitfield, D.L., Clusters in nitric oxide jet expansion, Rarefied Gas Dynamics Vol. 2 (L. Trilling and H.Y. Wachman, eds.), Academic Press, New York, 1969, pp. 1449–1453.

    Google Scholar 

  39. Bier, K., and Hagena, O., Optimum conditions for generating supersonic molecular beams, in Rarefied Gas Dynamics Vol. II, (J. H. de Leeuw, ed), Academic Press, New York, 1966, 260–278.

    Google Scholar 

  40. Milne, T.A., and Greene, F.T., Mass-spectrometric detection of dimers of nitric oxide and other polyatomic molecules, J. Chem. Phys. 47 (November 1, 1967) 3668–3669.

    Article  CAS  Google Scholar 

  41. Milne, T.A., and Greene, F.T., Mass spectrometric observations of argon clusters in nozzle beams. I. General behavior and equilibrium dimer concentrations, J. Chem. Phys. 47 (November 15, 1967) 4095–4101.

    Article  Google Scholar 

  42. Greene, F.T., and Milne, T.A., Mass spectrometric detection of polymers in supersonic molecular beams, J. Chem. Phys. 39 (December 1, 1963) 3150–3151.

    Article  CAS  Google Scholar 

  43. Bier, K. and Hagena, O., Influence of shock waves on the generation of high-intensity molecular beams by nozzles, Rarefied Gas Dynamics (J.A. Laurmann, ed.), Vol. I, Academic Press, New York, 1963, pp. 478–496.

    Google Scholar 

  44. Reis, V.H. and Fenn, J.B., Separation of gas mixtures in supersonic jetsj, J. Chem. Phys. 39 (December 15, 1963) 3240–3250.

    Article  CAS  Google Scholar 

  45. Rothe, D.E., Electron beam studies of the diffusive separation of helium-argon mixtures, Phys. Fluids 9 (September 1966) 1643–1658.

    Article  CAS  Google Scholar 

  46. Young, W.S., Rodgers, W.E., Cullian, C.A., and Knuth, E.L., Molecular-beam sampling of gas mixtures in cycling-pressure sources, Proceedings of the Seventh International Symposium on Rarefied Gas Dynamics held at Pisa, Italy, June 29-July 3, 1970.

    Google Scholar 

  47. Knuth, E.L., Supersonic Molecular Beams, App. Mech. Rev. 17 (October 1964) 751–762.

    Google Scholar 

  48. Anderson, J.B., Andres, R.P., and Fenn, J.B., High intensity and high energy molecular beams, in Advances in Atomic and Molecular Physics (D.R. Bates and I. Estermann, eds.), Academic Press, New York, 1965, pp. 345–389.

    Google Scholar 

  49. Anderson, J.B., Andres, R.P., and Fenn, J.B., Supersonic nozzle beams, Molecular beams (J. Ross, ed.), Wiley, New York, 1966, pp. 275–317.

    Google Scholar 

  50. French, J.B., Continuum-source molecular beams, AIAA J. 3 (June 1965) pp. 993–1000.

    Article  Google Scholar 

  51. Vick, A.R., and Andrews, E.H. Jr., An Investigation of Highly Underexpanded Exhaust Plumes Impinging upon a Perpendicular Flat Surface, NASA TN D-3269, February 1966, 55 pp.

    Google Scholar 

  52. Bier, K. and Schmidt, B., Zur Form der Verdichtungsstösse in frei expandierenden Gasstrahlen, Z. für angewandte Physik 13 (November 1961) 493–500.

    Google Scholar 

  53. Roberts, L., The action of a hypersonic jet on a dust layer, IAS Paper No. 63–50, Presented at the IAS 31st Annual Meeting, New York, January 21–23, 1963.

    Google Scholar 

  54. Bossel, U., Skimmer interaction: transition from a ‘shock beam’ to a supersonic nozzle beam, Entropie No. 30 (November-December 1969) 11–15.

    Google Scholar 

  55. Oman, R.A., Analysis of a skimmer for a high-intensity molecular beam using a three-fluid model, The Physics of Fluids, 6 (July 1963) 1030–1031.

    Article  Google Scholar 

  56. French, J.B., and McMichael, G.E., Progress in developing high energy nozzle beams, Rarefied Gas Dynamics, Vol. II (C.L. Brundin, ed.), Academic Press, New York, 1967, pp. 1385–1392.

    Google Scholar 

  57. Bossel, U., On the Optimization of Skimmer Geometries, submitted for publication.

    Google Scholar 

  58. Fenn, J.B., and Deckers, J., Molecular beams from nozzle sources, Rarefied Gas Dynamics, Vol. I (J.A. Laurmann, ed.), Academic Press, New York, 1963, pp. 497–515.

    Google Scholar 

  59. Fisher, S.S., and Knuth, E.L., Properties of low-density freejets measured using molecular-beam techniques, AIAA J. 7 (June 1969) 1174–1177.

    Article  Google Scholar 

  60. Potter, J.L., and Miller, J.T., Sphere drag and dynamic simulation in near-free-molecular flow, Rarefied Gas Dynamics Vol. I (L. Trilling and H.Y. Wachman, eds.), Academic Press, New York, 1969, pp. 723–734.

    Google Scholar 

  61. Brown, R.F., and Heald, J.H. Jr., Background gas scattering and skimmer intraction studies usirig a cryogenically pumped molecular beam generator, Rarefied Gas Dynamics Vol. II (C.L. Brundin, ed.), Academic Press, New York, 1967, pp. 1407–1424.

    Google Scholar 

  62. Valleau, J.P., and Deckers, J.M., Supersonic molecular beams. II. Theory of the formation of supersonic molecular beams, Can. J. Chem. 43 (January 1965) 6–17.

    Article  CAS  Google Scholar 

  63. Becker, E.W., Bier, K., and Burghoff, H., Die Trenndüse, Z. Naturforschung 10a (July 1955) 565–572.

    CAS  Google Scholar 

  64. Becker, E.W., Beyrich, W., Bier, K., Burghoff, H., and Zigan, F., Das Trenndüsenverfahren, Z. Naturforschung 12a (August 1957) 607–621.

    Google Scholar 

  65. Waterman, P.C., and Stern, S.A., Separation of gas mixtures in a supersonic jet, J. Chem Phys. 31 (August 1959) 405–419.

    Article  CAS  Google Scholar 

  66. Stern, S.A., Waterman, P.C., and Sinclair, T.F., Separation of gas mixtures in a supersonic jet. II. Behavior of heliumargon mixtures and evidence of shock separation, J. Chem. Phys. 33 (September 1960) 805–813.

    Article  CAS  Google Scholar 

  67. Abuaf, N., Anderson, J.B., Andres, R.P., Fenn, J.B., Miller, D.R., Studies of low density supersonic jets, in Rarefied Gas Dynamics Vol. 2, (C.L. Brundin, ed.), Academic Press, New York, 1967, pp. 1317–1136.

    Google Scholar 

  68. Anderson, J.B., Separation of gas mixtures in free jets, AIChE.13 (November 1967) 1188–1192.

    Article  CAS  Google Scholar 

  69. Wang, J.C.F., and Bauer, P.H., Measurements of spatial distribution of species in helium argon gas mixtures expanding in supersonic jets, in Rarefied Gas Dynamics (L. Trilling and H.Y. Wachman, eds.), Vol. II, Academic Press, New York, 1969, pp. 1009–1013.

    Google Scholar 

  70. Sebacher, D.I., Guy, R.W., and Lee, L.P., Diffusive separation in free jets of nitrogen and helium mixtures, Rarefied Gas Dynamics (L. Trilling and H.Y. Wachman, eds.), Vol. II, Academic Press, New York, 1969, pp. 931–938.

    Google Scholar 

  71. Zigan, F., Gasdynamische Berechnung der Trenndüsenentmischung, Z. Naturforschung 17a (1962) 772–778.

    CAS  Google Scholar 

  72. Sherman, F.S., Hydrodynamical theory of diffusive separation of mixtures in a free jet, Phys. Fluids 8 (May 1965) 773–779.

    Article  CAS  Google Scholar 

  73. Mikami, H., and Takashima, Y., Separation of gas mixture in an axisymmetric supersonic jet, Int. J. Heat Mass Transfer 11 (November 1968) 1597–1610.

    Article  CAS  Google Scholar 

  74. Campargue, R., Aerodynamic separation effect on gas and isotope mixtures induced by invasion of the free jet shock wave structure, J. Chem. Phys. 52 (February 15, 1970) 1795–1802.

    Article  CAS  Google Scholar 

  75. Bier, K., Umkehrung der Trenndüsen-Entmischung in Überexpandierten Gasstrahlen, Z. Naturforschung 15a (August 1960) 714–723.

    CAS  Google Scholar 

  76. Sebacher, D.I., Diffusive separation in shock waves and free jets of nitrogen-helium mixtures, AIAA. 6 (January 1968) 51–58.

    Article  CAS  Google Scholar 

  77. Chow, R.R., On the Separation Phenomenon of Binary Gas Mixture in an Axisymmetric Jet, Technical Report HE-150–175, University of California Institute of Engineering Research, Berkeley, November 4, 1959.

    Google Scholar 

  78. Schügerl, K., Investigations and applications of supersonic molecular beams, Rarefied Gas Dynamics (L. Trilling and H.Y. Wachman, eds.), Vol. 2, Academic Press, New York, 1969, pp. 909–930.

    Google Scholar 

  79. Aurich, V., and Schügerl, K., Determination of the radial distributions of the number densitites of the components in supersonic free jets of binary gas mixtures by molecular beam sampling, Entropie No. 30 (November-December 1969) 21–24.

    Google Scholar 

  80. Greene, F.T., Brewer, J., and Milne, T.A., Mass spectrometric studies of reactions in flames. I. Beam formation and mass dependence in sampling 1-atm gases, J. Chem. Phys. 40 (March 15, 1964) 1488–1495.

    Article  CAS  Google Scholar 

  81. Klingelhöfer, R., and Lohse, P., Production of fast molecular beams using gaseous mixtures, Phys. Fluids 7 (March 1964) 379–381.

    Article  Google Scholar 

  82. French, J.B., and O’Keefe, D.R., Omegatron studies of a skimmed beam system, Rarefied Gas Dynamics (J.H. de Leeuw, ed.), Vol. II, Academic Press, New York, 1966, pp. 299–310.

    Google Scholar 

  83. Fenn, J.B., and Anderson, J.B., Background and sampling effects in free jet studies by molecular beam measurements, Rarefied Gas Dynamics (J.H. de Leeuw, ed.), Vol. II, Academic Press, New York, 1966, pp. 311–330.

    Google Scholar 

  84. Knuth, E.L., Kuluva, N.M., and Callinan, J.P., Densities and speeds in an arc-heated supersonic argon beam, Entropie No. 18 (November-December 1967) 38–46.

    Google Scholar 

  85. Young, W.S., and Knuth, E.L., A binary-mixture arc-heated supersonic molecular beam, Entropie No. 30 (November-December 1969) 25–29.

    Google Scholar 

  86. LeRoy R.L., Govers, T.R., and Deckers, J.M., Background scattering of a supersonic free jet: Source temperature dependence, Can. J. Chem. 47 (1969) 2305–2306.

    Article  CAS  Google Scholar 

  87. Beynon, J., Mass Spectrometry and its Applications to Organic Chemistry, Elsevier Publishing Co., New York, 1960.

    Google Scholar 

  88. Kuentzel, L.E., Index of Mass Spectral Data, American Society for Testing and Materials, Philadelphia, 1963.

    Google Scholar 

  89. Rinehart, K.L., Jr., and Kinstle, T.H., Mass spectrometry, Annual Review of Physical Chemistry (H. Eyring, C.J. Christensen, and H.S. Johnston, eds.), Vol. 19, Annual Reviews, Inc., Palo Alto, 1968, pp. 301–342.

    Google Scholar 

  90. Cassuto, A., Variations in mass spectra with the temperature of the ionization chamber between — 150°C and + 200 °C, Advances in Mass Spectrometry, Vol. 2, Pergamon Press, Oxford, 1963, pp. 296–312.

    Google Scholar 

  91. Ehrhardt, H. and Osberghaus, O., Massenspektrometrische Untersuchungen von Kohlenwasserstoffen bei hohen Temperaturen, Z. Naturforschung 13a (1958) 16–21.

    Google Scholar 

  92. Komarov, V.N., and Tikhomirov, M.V., Temperature dependence of mass spectra. I. Mass spectra of ethylene and propane, Russ. J. Phys. Chem. 40 (December 1966) 1594–1597.

    Google Scholar 

  93. Milne, T.A., Beachey, J.E., and Greene, F.T., Study of relaxation in free jets using temperature dependence of n-butane mass spectra, J. Chem. Phys. 56 (March 15, 1972) 3007–3013.

    Article  CAS  Google Scholar 

  94. Ehrhardt, H., and Osberghaus, O., Temperaturabhängigkeit der Massenspektren von Kohlenwasserstoffmolekülen und ihre Bedeutung im Rahmen der statistischen Theorie, Z. Naturforschung 15a (1960) 575–584.

    CAS  Google Scholar 

  95. Komarov, V.N., and Tikhomirov, M.V., The effect of temperature on the mass spectra of propane and butane, Russ. J. Phys. Chem. 40 (August 1966) 1047–1048.

    Google Scholar 

  96. Rich, J.W., and Treanor, C.E., Vibrational relaxation in gas -dynamic flows, Annual Review of Fluid Mechanics, Vol. 2, Annual Reviews, Inc., Palo Alto, 1970, pp. 355–396.

    Google Scholar 

  97. Herzfeld, K.F., and Litovitz, T.A., Absorption and Dispersion of Ultrasonic Waves, Academic Press, New York, 1959.

    Google Scholar 

  98. Stevens, B., Collisional Activation in Gases, Pergamon Press, New York, 1967.

    Google Scholar 

  99. Tikhomirov, M.V. and Komarov, V.N., Effect of the surface on the mass spectrum of tetrafluoroethylene and the appearance potential of F+, Russ. J. Phys. Chem. 40 (June 1966) 751–753.

    Google Scholar 

  100. Young, W.S., Rodgers, W.E., Cullian, C.A., and Knuth, E.L., Supersonic molecular beams with cycling-pressure sources, AIAA J. 9 (Feb. 1971) 323–325.

    Article  Google Scholar 

  101. Young, W.S., Rodgers, W.E., Cullian, C.A., Wang, Y.G., and Knuth, E.L., A method for sampling the instantaneous chemical compositions in an internal combustion engine, Proceedings of the Second International Clean Air Conference (H.M. Englund and W.T. Beery, eds.), Academic Press, New York, 1971, pp. 418–424.

    Google Scholar 

  102. Newhall, H.K., Kinetics of engine-generated nitrogen oxides and carbon monoxide, Twelfth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1969, pp. 603–613.

    Google Scholar 

  103. Caretto, L.S., Muzio, L.J., Sawyer, R.F., and Starkman, E.S., The role of kinetics in engine emission of nitric oxide, Presented at the Third Joint Meeting, The American Institute of Chemical Engineers and Instituto Mexicano de Ingienieros Quimicos, Denver, Colorado, August 30-September 2, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press New York

About this chapter

Cite this chapter

Knuth, E.L. (1973). Direct-Sampling Studies of Combustion Processes. In: Springer, G.S., Patterson, D.J. (eds) Engine Emissions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1983-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1983-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1985-6

  • Online ISBN: 978-1-4684-1983-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics