Quasi-Holographic Techniques in the Microwave Region

  • Emmett N. Leith


Following the intensification of holographic activity in the 1960s, various researchers reported experiments that were direct microwave counterparts of the optical holography which preceded them (1) – (3). This work, which has recently become extensive, may be termed true microwave holography. As the title of our paper implies, we deal not with this rather restrictive field, but with a much broader one which embodies holographic-like techniques. With the broader license we gain access to a rather large body of material, of which we must discard all but a select portion.


Doppler Shift Signal Record Pulse Compression Zone Plate Chirp Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    R.P. Dooley, “X-band holography”, Proc. IEEE(Corresp.) ., vol. 53, Nov. 1965, pp. 1733–1735.CrossRefGoogle Scholar
  2. (2).
    D.E. Duffy, J. Opt. Soc. Amer., vol. 56, 1966, p.832.Google Scholar
  3. (3).
    G. Tricoles and E.L. Rope, J. Opt. Soc. Amer., vol. 56, 1966, p. 542.Google Scholar
  4. (3a).
    G. Tricoles and E.L. Rope, J. Opt. Soc. Amer., vol.57, 1967, p.97.CrossRefGoogle Scholar
  5. (4).
    J.W. Goodman, Introduction to Fourier Optics. New York: Me Graw-Hill, 1968, see for example p.60.Google Scholar
  6. (5).
    C.W. Sherwin, J.P. Ruina, and R.D. Rawcliffe, “Some early developments in synthetic aperture radar systems, “IRE Trans. Mil. Electron., col. MIL-6, Apr. 1962, pp.111–115.Google Scholar
  7. (6).
    L.J. Cutrona, W.E. Vivian, E.N. Leith, and G.O. Hall, “A high-resolution radar combat-surveillance system, “IRE Trans. Mil. Electron., vol. Mil-5, Apr. 1961, pp. 127–131.CrossRefGoogle Scholar
  8. (7).
    L.J. Cutrona, E.N. Leith, L.J. Porcello, and W.E. Vivian, “On the application of coherent optical processing techniques to synthetic-aperture radar”, Proc. IEEE, vol. 54, Aug. 1966, pp. 1026–1032.CrossRefGoogle Scholar
  9. (8).
    E.N. Leith and A.L. Ingalls, Appl. Opt., vol. 7, 1968, p.539.ADSCrossRefGoogle Scholar
  10. (9).
    A. Lozma and D.L. Kelly, Appl. Opt., vol.5, 1965, p.387.Google Scholar
  11. (10).
    J.R. Klauder, A.L. Price, S. Darlington, and W.J. Albersheim, Bell Syst. Tech. J., vol. 34, 1960, p.745.Google Scholar
  12. (11).
    E.N. Leith and J. Upatnieks, J. Opt. Soc. Amer., vol. 52, 1962, p. 1123.ADSCrossRefGoogle Scholar
  13. (12).
    E.N. Leith, “Optical processing techniques for simultaneous pulse compression and beam sharpening”, IEEE Trans. Aerosp. Electron. Syst., vol. AES-4, Nov. 1968, pp.879–885.CrossRefGoogle Scholar
  14. (13).
    Modern Radar. R. Berkowitz, Ed. New York: Wiley, 1965, p.212.Google Scholar
  15. (14).
    E.N. Leith, in Proc. 5th Annu. Radar Symp. Ann. Arbor, Mich.: University of Michigan, Feb. 1959.Google Scholar
  16. (15).
    E.N. Leith, in Proc. 2nd Conf. Pulse Compression. Rome, N.Y.: Rome Air Development Center, Aug. 1959.Google Scholar
  17. (16).
    W.C. Curtis, private communication, 1959.Google Scholar
  18. (17).
    L. Lambert, “Optical correlation”, see for example, ch.3 of (13).Google Scholar
  19. (18).
    F. Dickey, in Proc. 2nd Conf. Pulse Compression. Rome, N.Y.: Rome Air Development Center, Aug. 1959.Google Scholar
  20. (19).
    R.M. Goldstein and R.L. Carpenter, Science, vol. 139, 1963, p. 910.ADSCrossRefGoogle Scholar
  21. (20).
    L.J. Porcello, C.E. Heerema, and N.G. Massey, J. Geophys.Res., vol. 74, 1969, p.27.CrossRefGoogle Scholar
  22. (21).
    D.C. Beste and E.N. Leith, “An optical technique for simultaneous beamforming and cross-correlation”, IEEE Trans.Aerosp. Electron. Syst., vol. AES-2, July 1966, pp. 376–384.CrossRefGoogle Scholar
  23. (22).
    W.M. Brown, private communication, 1964.Google Scholar
  24. (23).
    R.W. Larson, E.L. Johansen, and S.J. Zelenka, “Microwave holography”, Proc. IEEE (Lett.), vol. 57, Dec. 1969, pp. 2162 – 2164.Google Scholar
  25. (24).
    W.E. Kock, “Stationary coherent (hologram) radar and sonar”, Proc. IEE (Lett), vol. 56, Dec. 1968, pp.2180–2181.CrossRefGoogle Scholar
  26. (25).
    W.E. Kock, “A hologram form of bistatic radar or sonar”, Proc. IEEE (Lett.), vol. 57, Jan. 1969, p. 100.Google Scholar
  27. (26).
    F. Tuttle and W.E. Kock, “A holographic pulse compression technique employing amplitude modulation”, Proc. IEEE (Special Issue on Computers in Industrial Process Control) (Lett.) vol. 58, Jan. 1970, pp. 153–154.Google Scholar
  28. (27).
    W.E. Kock, “Passive (cooperative) hologram radar”, Proc. IEEE (Lett.), vol. 58, Aug. 1970, p. 1297.Google Scholar
  29. (28).
    W.E. Kock, “Pulse compression with periodic gratings and zone plate gratings”, Proc. IEEE (Lett.), vol. 58, Sept. 1970, pp. 1395–1396.Google Scholar
  30. (29).
    W.E. Kock, “Holographic amplitude pulse compression for synthetic aperture radar”, Proc. IEEE (Special Issue on Optical Communication) (Lett.), vol. 58, Oct. 1970, pp. 1773–1774.Google Scholar
  31. (30).
    W.E. Kock, “Synthetic end-fire hologram radar”, Proc. IEEE (Lett.), vol. 58, Nov. 1970, pp. 1858–1859.ADSGoogle Scholar
  32. (31).
    W.E. Kock, “Holographic techniques in continuous wave bistatic radars”, Proc. IEEE (Lett.), vol. 58, Nov. 1970, pp.1863–1864.ADSGoogle Scholar
  33. (32).
    G.L. Rogers, Nature 177 613 (1956).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Emmett N. Leith
    • 1
  1. 1.University of MichiganAnn ArborUSA

Personalised recommendations