Generalizations of the Relativistic OPW Method Including Overlapping and Non-Overlapping Atomic Orbitals

  • N. W. Dalton
Part of the The IBM Research Symposia Series book series (IRSS)


The advantages and disadvantages of the standard orthogonalized plane-wave (OPW) method for calculating electronic band structures are briefly examined. Then, following Herring (1940), the possibility of increasing the convergence of the OPW method by including certain ‘outer-core’ auxiliary tight-binding functions in the OPW basis set is investigated. It is argued that, contrary to much recent work, the overlap of core and outer-core functions on neighboring lattice sites is non-negligible in many materials and must be taken into account (either directly or indirectly) if a modified OPW method is to form the basis for a flexible and rapidly convergent scheme for metals and semi-conductors. Detailed expressions are derived for the relativistic OPW and modified OPW matrix elements which include ℓ-dependent potentials and overlapping orbitals.


Dirac Equation Core State Schroedinger Equation Trial Wave Function Core Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, O. K. and Kasowski, R. V. (1971) “Electronic States as Linear Combinations of Muffin-tin Orbitals” Phys. Rev. B. 4 1064.ADSCrossRefGoogle Scholar
  2. Brown, E. and Krumhansl, J. A. (1958) “Energy Band Structure of Lithium by a Modified Plane-Wave Method” Phys. Rev. 109 30ADSCrossRefGoogle Scholar
  3. Butler, F. A., Bloom, F. K. and Brown, E. (1969) “Modification of the Orthogonalised Plane-Wave Method Applied to Copper” Phys. Rev. 180 744.ADSCrossRefGoogle Scholar
  4. Callaway, J. (1955a) “Orthogonalised Plane-Wave Method” Phys. Rev. 91 933.ADSCrossRefGoogle Scholar
  5. Callaway, J. (1955b) “Electronic Energy Bands in Iron” Phys. Rev. 99 500.ADSMATHCrossRefGoogle Scholar
  6. Dalton, N. W. (1970) “Notes on the Dirac Equation and the Relativistic OPW Method” IBM Research Report RJ 785 (unpublished).Google Scholar
  7. Dalton, N. W. (1971) “Approximate KKR Band-Structure Schemes for Transition Metals” Computational Methods in Band Theory (Plenum Press) p. 225.Google Scholar
  8. Euwema, R. N. (1971) “Rapid Convergence of Crystalline Energy Bands by Use of a Plane-Wave-Gaussian Mixed Basis Set” Intern. J. Quantum Chem. 5, 61.Google Scholar
  9. Euwema, R. N. (1971) “Plane1Wave-Gaussian Energy-Band Study of Nb” Phys. Rev. B 4 4332.ADSCrossRefGoogle Scholar
  10. Gray, D. and Brown, E. (1967) “Electron Energy Levels in Cu3Au” Phys. Rev. 160 567.ADSCrossRefGoogle Scholar
  11. Gray, D. and Karpien, R. J. (1971) “Some Notes on a Modified OPW Method” Computational Methods in Band Theory (Plenum Press) p. 144.Google Scholar
  12. Heine, V. (1967) “s-d Interaction in Transition Metals” Phys, Rev. 153 673.ADSCrossRefGoogle Scholar
  13. Herman, F.,Kortum, R. L., Ortenburger, I. B. and Van Dyke, J. P. (1968) “Relativistic Band Structure of GeTe, SnTe, PbSe and PbS” J. de Phys. C4, sup 11–12, 62.Google Scholar
  14. Herman, F., Kortum, R. L., Ortenburger, I. B. and Van Dyke, J. P. (1969) “ Electronic Structure and Optical Spectrum of Semi-Conductors” ARL Technical Report ( Aerospace Research Laboratories, ARL 69 - 0080 ).Google Scholar
  15. Herman, F. and Skillman, S. (1963) “Atomic Structure Calculations” (Prentice-Hall, Englewood Cliffs, New Jersey).Google Scholar
  16. Herring, C. (1940) “A New Method for Calculating Wave-Functions in Crystals” Phys. Rev. 57. 1169.ADSMATHCrossRefGoogle Scholar
  17. Hubbard, J. (1967) “The Approximate Calculation of Electronic Band-Structures” Proc, Phys. Soc. 92 921.ADSCrossRefGoogle Scholar
  18. Kleinman, L. and Shurtleff, R. (1969) “Modified Augmented-Plane-Wave Method for Calculating Energy Bands” Phys. Rev. 188 1111.ADSCrossRefGoogle Scholar
  19. Kohn, W. and Rostkoker, N. (1954) “Solution of the Schroedinger Equation in Periodic Lattices with an Application to Metallic Lithium” Phys. Rev. 94 1111.ADSMATHCrossRefGoogle Scholar
  20. Korringa, J, (1947) “On the Calculation of a Bloch-Wave in a Metal” Physica 13 392.MathSciNetADSCrossRefGoogle Scholar
  21. Kunz, A. B. “Combined Plane-Wave Tight-Binding Method for Energy-Band Calculations with Application to Sodium Iodide and Lithium Iodide” Phys. Rev. 180 934.Google Scholar
  22. Liberman, D., Waber, J, T. and Cromer, D. T. (1965) “Self-Consistent-Field Dirac-Slater Wave-Functions for Atoms and Ions. I. Comparison with Previous Calculations” Phys. Rev. 137 A27.ADSCrossRefGoogle Scholar
  23. Lipari, N. O. and Deegan, R. A. (1971) “Wave-Functions and Energy-Bands for Narrow Band Materials: A Modified Tight-Binding Calculation for the d-bands in Cu” (preprint).Google Scholar
  24. Lowdin, P. (1951) “A Note on the Quantum-Mechanical Perturbation Theory” J. Chem. Phys. 19 1396.MathSciNetADSCrossRefGoogle Scholar
  25. Miasek, M. (1957) “Tight-Binding Method for Hexagonal Close-Packed Structure” Phys. Rev. 107 92.MathSciNetADSMATHCrossRefGoogle Scholar
  26. Phillips, J. C. and Kleinman, L. (1959) “New Method for Calculating Wave-Functions in Crystals and Molecules” Phys. Rev. 116 287.ADSMATHCrossRefGoogle Scholar
  27. Phillips, J. C. (1968) “Significance of Model Hamiltonians in Energy- Band Theory” Adv. in Phys. 65 79.ADSCrossRefGoogle Scholar
  28. Slater, J. C. (1937) “Wave-Functions in a Periodic Potential” Phys. Rev. 51. 846.ADSMATHCrossRefGoogle Scholar
  29. Slater, J. C. and Koster, G. F. (1954) “Simplified LCAO Method for the Periodic Potential Problem” Phys. Rev. 94 498.ADSCrossRefGoogle Scholar
  30. Soven, P. (1965) “Relativistic Band-Structure and Fermi Surface of Thallium” Phys. Rev. A137 1706.ADSCrossRefGoogle Scholar
  31. Wigner, E. and Seitz, F. (1933) “On the Constitution of Metallic Sodium. I” Phys. Rev. 43 804.ADSMATHCrossRefGoogle Scholar
  32. Wigner, E. and Seitz, F. (1934) “On the Constitution of Metallic Sodium. II” Phys. Rev. 46 509.ADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • N. W. Dalton
    • 1
    • 2
  1. 1.IBM Research LaboratorySan JoseUSA
  2. 2.Theoretical Physics DivisionA.E.R.E.Harwell, BerkshireEngland

Personalised recommendations