Advertisement

On the Theory of Metallic Lithium

  • T. Schneider
  • E. Stoll
Conference paper
Part of the The IBM Research Symposia Series book series (IRSS)

Abstract

The pseudopotential formalism has been extensively applied to the interpretation of different physical properties of simple metals.1–3 However there are some well-known drawbacks to this approach, (i) Its use requires an accurate knowledge of both the core-state eigenfunctions and the core-state eigenvalues. Unfortunately these are not known very accurately. In fact the core-state eigenvalue shifts in the metal as compared to the free ion.4 For this reason model potentials have been introduced.4–7 However, Heine and Abarenkov,5 Ashcroft6 and Shaw7 make no attempt to base the shape of their model potentials on any physical principle. This and the missing information about the core shift show the importance of first-principle pseudopotentials. (ii) In reality, the electron gas screens the ionic pseudopotentials. This effect requires a knowledge of the dielectric function of the electron gas. However, there is still some uncertainty about the best approximation to include the effects of exchange and correlation.8–12

Keywords

Dielectric Function Phonon Frequency Free Atom Phonon Dispersion Curve Relative Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harrison, W.H., Pseudopotentials in the Theory of Metals (Benjamin Inc., New York, 1967 ).Google Scholar
  2. 2.
    Joshi, S.K. and A.K. Rajacopal, Solid State Physics 22, 159 (1968).CrossRefGoogle Scholar
  3. 3.
    Heine, V., Solid State Physics 24, 1 (1970).CrossRefGoogle Scholar
  4. 4.
    Lin, P.J. and J.C. Phillips, Ad. Phys. 14, 257 (1965).ADSCrossRefGoogle Scholar
  5. 5.
    Heine, V. and I. Abarenkov, Phil Mag. 9, 451 (1964) and 12, 529 (1965).Google Scholar
  6. 6.
    Ashcroft, N.W., J. Phys. Chem. 1 232 (1968).Google Scholar
  7. 7.
    Shaw, R.W., Phys. Rev. 174, 769 (1968).ADSCrossRefGoogle Scholar
  8. 8.
    Sham, L.J., Proc. Roy. Soc. (London) A283, 33 (1965).ADSCrossRefGoogle Scholar
  9. 9.
    Kleinman, L., Phys. Rev. 160, 585 (1967) and 172, 383 (1968).Google Scholar
  10. 10.
    Singwi, K.S., M.P. Tosi, R.H. Land and A. Sjölander, Phys. Rev. 176, 589 (1968).ADSCrossRefGoogle Scholar
  11. 11.
    Singwi, K.S., A Sjölander, M.P. Tosi and R.H. Land, Phys. Rev. B1, 1044 (1970).ADSGoogle Scholar
  12. 12.
    Schneider, T., Physica 52, 481 (1971).ADSCrossRefGoogle Scholar
  13. 13.
    Phillips, J.C. and L. Kleinman, Phys. Rev. 116, 287 (1959).ADSMATHCrossRefGoogle Scholar
  14. 14.
    Kohn, W. and L.J. Sham, Phys. Rev. 111, 442 (1958).CrossRefGoogle Scholar
  15. 15.
    Ziman, J.M. and L.J. Sham, Solid State Physics 15, 221 (1963).CrossRefGoogle Scholar
  16. 16.
    See Kittel, 17 Appendix A.Google Scholar
  17. 17.
    Kittel, C., Introduction to Solid-State Physics, 2nd ed. ( Wiley, New York, 1956 ).Google Scholar
  18. 18.
    Waeber, W.B. and E. Stoll, Physica, to be published.Google Scholar
  19. 19.
    Smith, H.G., G. Dolling, R.M. Nicklow, P.R. Vijayaraghaven and M.K. Wilkinson, Neutron inelastic scattering, Vienna: IAEA 1968, Vol. I, p. 149.Google Scholar
  20. 20.
    Schneider, T., Helv. Phys. Acta 42, 957 (1969).Google Scholar
  21. 21.
    Barrett, C.S., Acta Cryst. 9, 671 (1956).CrossRefGoogle Scholar
  22. 22.
    Herman, F., and S. Skillman, Atomic Structure Calculations, (Prentice Hall Inc., Englewood Cliffs, N.Y. 1963 ).Google Scholar
  23. 23.
    Schneider, T. and E. Stoll, Solid State Commun. 8, 1729 (1970).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • T. Schneider
    • 1
  • E. Stoll
    • 1
  1. 1.IBM Zurich Research LaboratoryRüschlikonSwitzerland

Personalised recommendations