Anharmonic Lattice Dynamics: Renormalized Theory

  • Heinz Horner
Conference paper
Part of the The IBM Research Symposia Series book series (IRSS)


An anharmonic perturbation theory for phonons is discussed using partially renormalized coupling constants. Criteria are given which allow calculation of these in a self-consistent way, and the similarity to conventional anharmonic perturbation theory is outlined. The theory can be applied to strongly anharmonic crystals including hard-core interactions. As examples, calculations on quantum crystals and rare gas crystals are discussed.


Pair Distribution Function Solid Helium Renormalize Theory Quantum Crystal Renormalize Coupling Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klein, M. L., Horton, G. K. and Feldmann, J. L., Bull. Am. Phys. Soc. 13, 689 (1968); and Klein, M. L. and Horton, G. K., Proc. L. T. 11, St. Andrews, Scotland I, 553 (1968).Google Scholar
  2. 2.
    De Wette, F. W. and Nijboer, B.R.A., Phys. Letters 18, 19 (1965).ADSCrossRefGoogle Scholar
  3. 3.
    Born, M., Festschrift der Akademie der Wissenschaften, Goettingen (1951).Google Scholar
  4. 4.
    Koehler, T. R., Phys. Rev. Letters 17, 89 (1966).ADSCrossRefGoogle Scholar
  5. 5.
    Choquard, P., The Anharmonic Crystal (W. A. Benjamin, New York) 1967.Google Scholar
  6. 6.
    Horner, H., Z. Physik 205, 72 (1967).ADSCrossRefGoogle Scholar
  7. 7.
    Nosanow, L. H., Phys. Rev. 146, 120 (1966).ADSCrossRefGoogle Scholar
  8. 8.
    Horner, H., Solid State Comm. 9, 79 (1971).ADSCrossRefGoogle Scholar
  9. 9.
    Horner, H., Z. Physik 242, 432 (1971).ADSCrossRefGoogle Scholar
  10. 10.
    See, e.g., Kadanoff, L. P. and Baym, G., Quantum Statistical Mechanics (W. A. Benjamin, New York) 1962.MATHGoogle Scholar
  11. 11.
    See, e.g., Leibfried, G. and Ludwig, W., Solid State Phys. 12, 275 (1961).MathSciNetCrossRefGoogle Scholar
  12. 12.
    Goldmann, V. V., Horton, G. K. and Klein, M. L., Phys. Rev. Letters 24, 1424 (1970).ADSCrossRefGoogle Scholar
  13. 13.
    Leake, J. A., Daniels, W. B., Skalyo, J., Frazer, B. C. and Shirlane, G., Phys. Rev. 181, 1251 (1969); and Skalyo, J., private communication.Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Heinz Horner
    • 1
  1. 1.Institut für FestkörperforschungKernforschungsanlageJülichWest Germany

Personalised recommendations